
TOWARD AN AUTOMATED BOTNET ANALYSIS FRAMEWORK:
A DARKCOMET CASE-STUDY

Submitted in partial fulfilment
of the requirements of the degree

Master of Sciences
of Rhodes University

Jeremy Cecil du Bruyn

Grahamstown, South Africa
June 2015

Abstract

This research proposes a framework for the automated analysis of malware samples, specifically
botnet binaries. This framework will automate the collection, analysis, and infiltration of botnets.
Due to the increased number of samples released daily, such frameworks have become a necessity
for anti-malware organisations and product vendors. Some academic research has recently been
concluded into their design and development.

A review of current botnet analysis frameworks highlights a number of fundamental shortcomings
when compared to modern analysis framework design and implementation recommendations. As
such, research was conducted into the design of a modern, automated botnet analysis framework
incorporating this advice. This document presents a modular, low resource botnet analysis
framework which is not botnet family or variant specific. Detailed information on the roles, design
criteria and implementation of the systems which make up this framework is provided.

To test and prove the proposed framework’s feasibility, a case-study was conducted which resulted
in the collection of 83,175 DarkComet Remote Administration Tool (RAT) samples, of which
48.85% were successfully analysed and their configuration information extracted. This lead to the
infiltration of 751 Command and Control servers, which provided information on 109,535 unique
victim computers. The collection of the DarkComet bot binaries occurred between August of
2013 and June 2014, with Command and Control (C&C) infiltration commencing on 10 May
2014 and concluding on 6 June 2014.

This research updates and expands current DarkComet analysis literature by presenting a com-
prehensive breakdown of all possible configuration settings embedded within DarkComet bot
binaries. A refined exploit for the previously published QUICKUP vulnerability, which prevents
detection by botmasters and supports the downloading of large files, is provided. This document
concludes with some of the lessons learnt during the development and implementation of the
framework and provides advice for future improvements.

The contribution of this research is a review of the shortcomings of current academic automated
botnet analysis frameworks, considerations for the development of future frameworks, and a de-
tailed description of the design and implementation of the framework developed. Additionally,
the results of a case-study which leveraged the framework to analyse DarkComet RAT sam-
ples is provided, along with additional design considerations gleamed through a review of the
framework’s performance during the case-study.

Acknowledgements

A number of people have been instrumental in the success of this thesis, without who this work
may never have been completed. Whilst some require special mention, to those not named, my
eternal thanks go out to you.

To my wife Samantha, for the limitless patience, support, and encouragement shown during this
extended process. And to my daughters, Taylor and Juliet, for letting daddy ”do his schoolwork”
when required.

To my supervisor Dr. Barry Irwin, for sharing his almost boundless knowledge, undeterred
guidance, and essential ”nudges” when the task seemed too great to accomplish and energy
levels were depleted.

To my long-time friends Nicholas Arvanitis and John McKay, for finding the time to proofread
and highlight technical and grammatical mistakes my subconscious had decided to ignore. Any
errors that remain are mine alone.

i

Table of Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Research Goal . 2
1.2 Research Methodology . 2
1.3 Document Conventions . 3
1.4 Document Structure . 3

2 Literature Review 4
2.1 Malware Analysis . 4

2.1.1 Static Analysis . 5
2.1.2 Dynamic Analysis . 5

2.2 Malware Detection . 6
2.3 Malware Use . 7
2.4 Existing Automated Botnet Analysis Framework Research 8
2.5 Existing Botnet Framework Shortcomings . 11
2.6 Summary . 12

3 DarkComet 13
3.1 DarkComet Introduction . 14
3.2 DarkComet Capabilities . 14
3.3 DarkComet Components . 14

3.3.1 DarkComet Client and Builder . 16
3.3.2 DarkComet Server . 18

3.4 DarkComet Configuration . 19
3.5 DarkComet Communication . 20
3.6 Previous DarkComet Research . 23
3.7 DarkComet Summary . 24

4 Framework Design 25
4.1 Framework Design Considerations . 25
4.2 Framework Details . 26
4.3 Sample Collection System . 28

4.3.1 Sample Acquisition Module . 28
4.3.2 Sample Metadata Collection Module . 29

ii

4.4 Sample Analysis System . 30
4.4.1 Static Analysis Module . 31
4.4.2 Dynamic Analysis Module . 33

4.5 Infiltration System . 35
4.5.1 C&C Liveness Module . 36
4.5.2 C&C Interaction Module . 37

4.6 Message Queue . 39
4.7 Framework Design Summary . 40

5 Framework Implementation 42
5.1 Sample Collection System Implementation . 42

5.1.1 Sample Acquisition Module Implementation 44
5.1.2 Sample Metadata Collection Module Implementation 47

5.2 Sample Analysis System Implementation . 51
5.2.1 Static Analysis Module Implementation 51

5.3 Infiltration System Implementation . 56
5.3.1 C&C Liveness Module Implementation . 56
5.3.2 C&C Interaction Module Implementation 58

5.4 Datastore Implementation . 61
5.5 Framework Implementation Summary . 64

6 Case-study: Data Analysis 67
6.1 Sample Acquisition Module Analysis . 67
6.2 Sample Metadata Collection Module Analysis . 68

6.2.1 Malware Family Distribution . 68
6.2.2 File Type Distribution . 69
6.2.3 File Size Analysis . 73
6.2.4 First Seen Distribution . 78
6.2.5 Using Fuzzy Hashing to Identify DarkComet Versions 80

6.3 Sample Analysis System Analysis . 81
6.3.1 Statically Analysed Malware Family Distribution 81
6.3.2 Statically Analysed File Types Distribution 83
6.3.3 Statically Analysed First Seen Distribution 84
6.3.4 C&C Servers per Bot Binary . 85
6.3.5 C&C Hostname Analysis . 86
6.3.6 C&C TCP Port Analysis . 87
6.3.7 C&C Communication Encryption Key Analysis 88
6.3.8 C&C Bot Configuration Analysis . 89

6.4 C&C Liveness Module Analysis . 91
6.4.1 C&C Geographic Dispersion . 92

6.5 C&C Interaction Module Analysis . 93
6.5.1 Victim Geogrpahic Distribution . 94
6.5.2 Victim Organisation Distribution . 94
6.5.3 Common C&C Ports . 95
6.5.4 Botnet Size . 95
6.5.5 Victim Operating System . 96
6.5.6 Victim Username . 96

6.6 Summary . 97

iii

7 Conclusion 99
7.1 Research Methodology . 99

7.1.1 Existing Framework Reviews . 99
7.1.2 Framework Design Considerations . 100

7.2 Case-study Results . 102
7.3 Proposed Framework Shortcomings . 103
7.4 Future Work . 104

References 104

Appendices 111

A DarkComet Builder Menus 112

B DarkComet Complete Configuration Key-Value Pairs 122

iv

List of Figures

3.1 The DarkComet client/operator main interface. 16
3.2 DarkComet client main menu. 17
3.3 DarkComet builder minimalist configuration. 17
3.4 DarkComet builder ”Full editor” menu. 18
3.5 DarkComet version 4 binary showing configuration information. 19
3.6 DarkComet version 5.1 binary showing encrypted configuration information. . . . 20

4.1 Framework process flow. 27
4.2 Sample Acquisition module process flow. 29
4.3 Metadata collection module process flow. 30
4.4 Sample Analysis System analysis process flow. 31
4.5 A generic Static Analysis module process flow. 33
4.6 The Dynamic Analysis module process flow. 34
4.7 Infiltration System process flow. 36
4.8 C&C Liveness module process flow. 37
4.9 C&C Interaction module process flow. 39
4.10 Message queue process flow. 40

5.1 DarkComet configuration extraction process. 54
5.2 Case-study Static Analysis module process flow. 55
5.3 Datastore Implementation. 63

6.1 Screenshot of File Binder menu option from the DarkComet builder. 74
6.2 Display icons of bound files as seen in Windows Explorer. 76
6.3 Execution of bot binary with hash of 4183.... 77
6.4 DarkComet bot binaries submitted to VirusTotal between 2010 and 2014. 79
6.5 Geoplotting of last known C&C IP addresses. 92
6.6 Geoplotting of last known victim IP addresses. 94

A.1 DarkComet Main Settings menu. 113
A.2 DarkComet Network Settings menu. 113
A.3 DarkComet Module Starup menu. 115
A.4 DarkComet Install Message menu. 116
A.5 DarkComet Module Shield menu. 117
A.6 DarkComet Keylogger menu. 118
A.7 DarkComet Hosts File menu. 119
A.8 DarkComet Add Plugins menu. 119
A.9 DarkComet File Binder menu. 120
A.10 DarkComet Choose Icon menu. 120

v

A.11 DarkComet Stub Finalization menu. 121

vi

List of Tables

2.1 Summary of existing botnet analysis frameworks. 11

3.1 The DarkComet release schedule. 14
3.2 A summary of DarkComet’s capabilities. 15
3.3 DarkComet configuration embedded within the DarkComet bot binary. 21

5.1 Data stored within the samples table. 47
5.2 Data stored within the metadata table. 50
5.3 DarkComet static configuration encryption keys per version. 52
5.4 Data stored within the cnc table. 55
5.5 Data stored within the cnc ip table. 57
5.6 Data stored within the cnc connections table. 57
5.7 C&C Infiltration module data model. 62

6.1 A count of the identified malware families by Windows Defenders. 68
6.2 Detection rates across all collected bot binaries. 70
6.3 Detection rates for all bot binaries identified as benign by Windows Defender. . . 71
6.4 Top 10 bot binary file types by count. 72
6.5 Top 9 bot binary file type signatures by count, excluding unknown. 72
6.6 Top 10 data set bot binary file sizes by count. 73
6.7 Bot binaries with identical file sizes to that of minimalist configuration bot binary. 73
6.8 The 10 bot binaries with the largest file size. 75
6.9 Hard disk space usage by Windows Defender identified malware family. 76
6.10 A breakdown of the First Seen distribution over the entire bot binary dataset. . . 78
6.11 A count of the dataset bot binaries analysed by VirusTotal during 2013. 78
6.12 A count of dataset bot binaries analysed by VirusTotal during Jan-Jun 2014. . . 79
6.13 The 10 oldest bot binaries by order by First Seen date. 80
6.14 The SHA256 and CTPH hash values of a minimalist DarkComet 5.3 bot binary. 81
6.15 CTPH values for a default configured DarkComet bot binary per version. 82
6.16 CTPH comparison between dataset and minimalist DarkComet bot binaries. . . 82
6.17 Comparison between rat type designation and Windows Defender malware family. 83
6.18 The file type distribution successfully analysed by the Static Analysis module. . . 83
6.20 Statically analysed file type distribution, per version. 84
6.21 Statically analysed file type distribution for version 3.x-5.0 bot binaries. 84
6.19 Unknown file types re-classified by the Linux file utility. 84
6.22 Statically analysed bot binaries per year, across all DarkComet versions. 85
6.23 Statically analysed bot binaries per year, per DarkComet version. 85
6.24 Statically analysed bot binaries first analysed by VirusTotal in 2012. 86
6.25 Bugfixes for DarkComet versions 5.0 and later. 86

vii

6.26 C&C servers with the highest number of DNS hostname and TCP Port combinations. 87
6.27 Top 10 Second Level Domains. 88
6.28 Top 10 C&C server ports. 88
6.29 Top 10 IANA registered C&C ports. 89
6.30 Top 10 DarkComet communication encryption keys. 89
6.31 Bot binaries without a DarkComet communication encryption key configured. . . 90
6.32 Bot binaries employing the default DarkComet communication encryption keys. . 90
6.33 The 10 most commonly configured DarkComet configuration settings. 90
6.34 The 11 C&C servers which were live during the entire infiltration period of 27 days. 91
6.35 The 10 countries with the highest number of live DarkComet C&C servers. . . . 93
6.36 The 10 organisations with the highest number of DarkComet victims. 95
6.37 Count of DarkComet botnets by number of victims. 96
6.38 C&C and victim countries of the 10 largest DarkComet botnets. 96

B.1 Main Settings DarkComet bot binary configuration key-value pairs. 123
B.2 Network Settings DarkComet bot binary configuration key-value pairs. 123
B.3 Module Startup DarkComet bot binary configuration key-value pairs. 124
B.4 Install Message DarkComet bot binary configuration key-value pairs. 125
B.5 Module Shield DarkComet bot binary configuration key-value pairs. 126
B.6 Keylogger DarkComet bot binary configuration key-value pairs. 127
B.7 Hosts File DarkComet bot binary configuration key-value pairs. 127
B.8 File Binder DarkComet bot binary configuration key-value pairs. 127
B.9 Miscellaneous DarkComet bot binary configuration key-value pairs. 128

viii

1
Introduction

Botnets, networks of compromised computers [69], are regarded as the largest threat to the
Internet [48]. An estimated 40% of Internet connected hosts are compromised and being used
as members of a botnet with losses estimated at $13.3 billion [15]. These ”bots” are used to
distribute unsolicited e-mail messages, as unwilling participants in Distributed Denial of Service
(DDoS) attacks, in the recruitment of additional computers by spreading the infection, and
in the theft of sensitive information such as usernames, passwords, and financial information.
Typical infection occurs through the execution of a malicious executable file, referred to as the
”bot binary”, which is distributed through a number of means. These include peer-to-peer file-
sharing networks, spam e-mail messages, the exploitation of software vulnerabilities, and social
engineering attacks whereby the bot binary is advertised as being benign in nature.

The botnet problem is further exacerbated by the increasing number of malicious executables
being released onto the Internet daily. Panda Security1, a Spanish computer security company
best known for their anti-malware products, reported that 160,000 unique malware samples were
being released daily in Quarter 2 2014 [17] with this number increasing to 227,474 by the end
of Quarter 3 2014 [71]. This is due to a decrease in the development costs of botnet software,
the ready availability of the software for purchase or download, and an increase in the demand
for such software by miscreants looking to extract illicit financial benefit from an activity which
has a very low prosecution rate. Additionally, as attackers improve their understanding of the
inner-workings of anti-malware software, software intended to detect and remove infections, and
the analysis procedures employed by these vendors, new techniques are devised to circumvent
detection and prevent analysis or increase analysis resources. This has resulted in an arms race
between malware authors and anti-malware vendors. Due to the resources required to perform
analysis of samples, and the limited number of individuals possessing the requisite skills, anti-
malware companies have looked to automation to solve their resourcing issues. The resulting
frameworks are capable of performing analysis and classification of potentially malicious samples
automatically without the need for human intervention; with varying degrees of success. The

1http://www.pandasecurity.com/

1

business advantages provided by such frameworks require that their design and implementation
are treated as trade secrets.

In summary, the number of Internet-connected hosts that are members of botnets is staggering
and when combined with the number of unique malware samples being introduced daily, has led
to a necessity for the development of automated botnet analysis frameworks.

1.1 Research Goal

The goal of this research can simply be stated as the design of a framework to assist with the
analysis of botnets. This is to be achieved through:

• the collecting of malware samples

• the collecting and/or extracting of metadata associated with these samples

• extracting the botnet configuration information from these samples

• interacting with the botnet C&C identified

In addition, this framework should:

• avoid the shortcomings of existing frameworks

• incorporate modern framework design requirements

• be botnet agnostics

• require limited resources

To achieve this goal a methodology was devised which is presented in the following section.

1.2 Research Methodology

The research methodology consists of three components:

1. A review of existing automated botnet analysis frameworks, to learn from previous im-
plementations and ensure that shortcomings identified within these frameworks is not re-
peated. The output of this review is detailed in Section 2.4, with the shortcomings identified
in Section 2.5.

2. A review of design requirements for a modern botnet analysis framework, to ensure that
the framework design is aligned with advances in malware analysis techniques, research,
and advice. This is covered in Section 4.1.

3. A case-study (see Chapter 6) utilising the proposed framework to determine its performance
when utilised in actual botnet research. This will aid in highlighting shortcomings present
in the proposed framework, which if not able to be remedied during the research period,
would be obvious considerations for future improvements to the framework.

2

1.3 Document Conventions

This document makes use of footnotes to provide Uniform Resource Identifier (URL)’s to web-
sites, organisations, and software. This allows the reader quick access to information which
is not central to the topic. This results in full references being used for research information-
sources.

A listing of the acronyms used within this document is available at the end of the document.

1.4 Document Structure

The remainder of this document is structured as follows:

Chapter 2 provides an overview of previous work relating to automated botnet analysis frame-
works and includes design considerations for modern frameworks.

Chapter 4 provides the technical details of the proposed framework.

Chapter 3 is an introduction to the DarkComet RAT along with its components, capabilities,
configuration, and communication protocol. Included is a summary of previous research con-
ducted into DarkComet as well as some of the more interesting cyber-espionage campaigns it
has been used in.

Chapter 5 details the implementation of the systems which comprise the framework used in the
analysis of the DarkComet bot binaries collected. It also provides details on the additional system
developed and incorporated, which provide DarkComet specific information, and would not have
been possible with a generic implementation of the framework. This illustrates the flexibility
of the framework in its ability to be customised for the study of specific botnet families and
variants, whilst remaining usable as a generic framework for other botnet families.

Chapter 6 provides an analysis of the data generated during the DarkComet RAT case-study,
demonstrating the frameworks ability to extract, store and retrieve useful information.

Chapter 7 is the conclusion of the work, providing a review on the successes and perhaps more
importantly, the failures of the framework, along with suggestions for future work.

3

2
Literature Review

This chapter provides an overview of traditional malware analysis and detection techniques,
along with a review of existing automated botnet analysis frameworks and their shortcomings.
The analysis of botnet samples typically comprises three forms of information gathering:

• malware analysis (Section 2.1) which deals with information extraction directly from the
sample,

• botnet detection which attempts to find both hosts infected by botnet software and/or
their control infrastructure (Section 2.2),

• and finally infiltration of the botnet to determine the purpose and uses of victim systems
by their human controllers or ”botmasters” (Section 2.3).

An introduction is provided into each of these forms with emphasis on those which are the focus
of the proposed framework. The chapter continues with a review of the existing automated
botnet analysis and/or infiltration frameworks (see Section 2.4). This includes the frameworks
sample source, how analysis is conducted and infiltration occurs, and which Internet Protocol (IP)
protocols are supported. The chapter concludes with an overview of the shortcomings present in
these frameworks (see Section 2.5) in so far as their appropriateness as a generic botnet analysis
and infiltration framework, supporting any family or variant of botnet.

2.1 Malware Analysis

Through the use of static (see Section 2.1.1) and dynamic analysis (see Section 2.1.2) techniques
and procedures, researchers are able to study the inner workings of malicious software. Infor-
mation gleaned includes the softwares means of infection and propagation, the changes made
to and their impact on the infected victim computer, the capabilities of the software, and (in
the case of botnet software) the specifics of communications between the infected host and the
human controller or botmaster. This answers the question of ”How does this malware or botnet

4

operate?”. This information forms the basis for other areas of botnet study such as the detection
of botnet hosts, both clients and servers, and the potential or confirmed uses of the botnet.

2.1.1 Static Analysis

Static analysis is the method by which analysis is conducted without the execution of the sample
under investigation. This method requires that a human analyst perform the study of the
sample by either reviewing the source code of the malware and/or its compiled object code.
Attributes such as the format, sections, resources and imported programmatic libraries [44] are
extracted. Investigations typically make use of software called a disassembler, which interprets
the instructions executed by the operating system, an example of which is IDA1.

Manual static analysis can be resource intensive. Malware authors purposefully employ obfus-
cation techniques [7,14,76] when constructing the distributed malware executable, often applied
during the conversion of source code to executable, with the intention of slowing analysis and
potentially increasing the time the malware can remain undetected. Thus, keeping its purpose
or capabilities hidden. Also, malware may contain information sensitive to its operation such as
the encryption keys used to decrypt parts of the object code or communications, which requires
safeguards against their exposure.

Due to the specialised skills required by malware analysts [45] and the ever increasing number
of new samples released daily, employing automated static analysis software and systems are
now common place amongst the malware research community. Especially those with financial
incentives such as anti-malware product vendors. This is not to say that static analysis software
and techniques have not advanced and evolved [13]. By making use of execution flow graphs [22]
malware analysts are able to more quickly determine those parts of the object code responsible
for certain actions, such as network communication or file creation, thereby allowing focus on
only those object code fragments of interest.

A ”configuration ripper” is a term used by malware analysts when referring to scripts or programs
which are able to extract the botnet or malware configuration from a sample; typically employing
static analysis methods. Typically a large initial cost may be required to develop the methods
necessary to perform the configuration extraction in a dependable, repeatable, reliable manner.
However, the benefits can soon be realised if multiple samples of the same malware family require
analysis. Fortunately, due to an existing pool of malware analysis knowledge it may be possible
to re-use published source code, with some modification, or the output of malware research
to implement a configuration ripper. It should also be noted that not all malware families or
samples lend themselves to static analysis methods or configuration rippers due to the obfuscation
methods employed by software’s author.

2.1.2 Dynamic Analysis

In opposition to static analysis, dynamic analysis is a method of analysis by which a malware
sample is executed and its transient and permanent effects on the executing computer observed.
This type of analysis can allow for easier demonstration of the malware’s effect on an infected
computer and may require less time, and arguably skill, than that of static analysis.

1http://www.hex-rays.com/products/ida/

5

Dynamic analysis is typically conducted through the use of a debugger (such as the IDA de-
bugger2) or an instrumented virtual computer (such as Cuckoo Sandbox3). These techniques
allow for varying capabilities in determining or monitoring for changes to the infected host’s file-
system, registry (in the case of a Microsoft Windows computer), running processes and services,
and network activity.

A debugger is a software program which provides some degree of control over the execution
of software under investigation through the use of breakpoints. Also, the ability to view the
contents of CPU registers aids in the determination of program values during execution [35].
As mentioned in Section 2.1.1, it is common for malware authors and distributors to employ
obfuscation methods to defeat analysis of samples and bypass security measures, this holds
true for dynamic analysis. Malware authors include functions in their code which attempt to
determine the execution state of the executable, allowing for the detection of a debugger or
its execution within a virtual machine, and altering the malware’s execution [11, 28, 47, 60, 70].
However, dynamic analysis methods remain some of the most popular when requiring an in-depth
understanding of a malware samples operation and capabilities.

Instrumentation typically takes the form of specialised kernel-mode drivers [4] and/or operating
system Application Programming Interface (API) ”hooking” [39, 74] that monitor and log calls
to monitored API’s before their execution. These logs are gathered into a report which details
the behaviour of the executable under investigation. An analysis of these behaviours, often
shared between malware families and variants and even commonly amongst malware, can lead to
the identification of a malicious executable [72]. By utilising virtualisation technology the time
required to rebuild an instrumented computer once infected is considerably reduced. This allows
for a greater number of analysed samples within a given time period. Due to the effects of the
malware sample being observed within its intended environment, this method of analysis is often
able to negate code obfuscation introduced by malware authors. Due to an increased awareness
of the tools, techniques and procedures employed by malware researchers, malware authors have
introduced virtualisation detection capabilities, which when detected alters the usual execution
flow of the malware [11, 47]. An example of which is the altering of behaviour to prevent the
execution of malicious functions, in an attempt to fool analysis into classifying the executable as
benign.

2.2 Malware Detection

Utilising the output of malware analysis, detection and removal capabilities can be developed or
improved. The aim being to prevent the execution of the malware before it can infect a computer
or after-the-fact clean-up of an infected host. The most common implementation of these aims
is that of anti-virus software4. Other examples are network- and host- based intrusion detection
systems56, which monitor for network traffic or system behaviour matching known malware
patterns. These technologies allow for pre-programmed responses to an infection, such as the
blocking of malware communication and the alerting of system administrators to the presence of
infected computers. The use of network-based analysis in detecting botnet software has attracted

2http://www.hex-rays.com/products/ida/debugger/
3http://www.cuckoosandbox.org/
4http://www.clamav.net/
5http://www.snort.org/
6http://suricata-ids.org/

6

a large amount of research [26, 34, 42, 68]. The most popular intention is the detection and
subsequent response to bots and C&C servers on large networks, such as the Internet. This form
of analysis answers the questions of ”Which hosts are members of a botnet and where is the
command infrastructure?” and ”Which hosts are/were infected?”.

2.3 Malware Use

The final form of malware information gathering is determining the purpose and utilisation of
the botnet by their human controllers. This answers the question of ”Why was this botnet
created?”. Again, this builds upon a detailed understanding of a malware’s functioning and
behaviour typically provided through malware analysis.

This analysis can be conducted through a number of methods with the most popular being that
of infecting an instrumented computer and monitoring its long-term behaviour. Alternatively,
botnets can be infiltrated through the development of software which mimics the behaviour of an
infected computer and provides greater analysis capabilities. These are typically called research
bots.

The infection of an instrumented computer or honeypot, a computer system designed to attract
and monitor the effects of a malware infection, can provide critical information in the use of
a botnet by its botmaster. Whilst there are a number of general use honeypots, which are
capable of being infected by a large number of different malware families, those specifically
developed to focus on the analysis of a specific family or variant typically bear the greatest
information. An example of which is the Kippo Secure Shell (SSH) Honeypot7. This honeypot
emulates the SSH [77] service fooling an attacker into believing he has successfully compromised
a computer, through guessing a valid set of user credentials, and then recording the attackers
issued commands. Kippo provides only a subset of the available operating system commands so
as to prevent an attacker from breaking-out of the simulated environment. The intention is to
mitigate the use of the honeypot as a launch point for the spreading of the infection, or in other
malicious activities.

Through an understanding of a botnet’s command grammar it is possible to develop software
which is capable of impersonating an infected computer and monitoring for the commands issued
by a human controller. This allows insights into how victims are being used and what they are
being used for [12, 30, 67]. This differs, again, from a general use honeypot in that it is often
malware family or variant specific. By possessing the information regarding a botnet’s command
infrastructure and registration information, a research bot can be placed within the botnet
without being infected or even having access to the malware sample. Additional benefits include
the ability to omit specific malware capabilities , such as its ability to affect computers that are
not part of the research environment – through removing its spread capabilities. In addition, a
research bot typically requires far less computing resources than that of a honeypot allowing for
the infiltration of a far greater number of botnets by a single analysis computer.

In summary, it is only through employing malware analysis techniques, either static or dynamic,
that information leading to the detection of victim and C&C servers can be accomplished and
ultimately the purpose of botnets can be ascertained. Through the automation of malware
analysis it is possible to decrease the time required to extract information from a malware

7http://github.com/desaster/kippo

7

sample and increase the number of samples analysed over a given time frame. All of which lead
to improved malware defence capabilities and detection.

2.4 Existing Automated Botnet Analysis Framework Research

Due to the reasons previously highlighted, a need for automated malware analysis frameworks
in both the commercial and academic sectors seems logical.

Although a review of all research into automated methods of malware analysis, a large and ever
expanding body of literature, was outside the scope of this work, an overview of research into
those methods applied specifically to botnet research is presented below. Research included
details regarding the techniques used for the collection and analysis of botnet samples, live data
collection and, where pertinent or available, the published results.

Freiling et al. [3, 30] gathered information on Internet Relay Chat (IRC)-based botnets,
through the use of a framework consisting of ”mwcollect” (a low-interaction honeypot which
later evolved into ”dionnea”8) and shellcode emulation (whereby files referenced in a URL were
downloaded). All collected samples were executed within a GenII honeypot9, to gather infor-
mation regarding the C&C server, Domain Name System (DNS) hostname or IP address and
Transmission Control Protocol (TCP) port, and potentially the botnet registration information.
Botnet registration is the information needed to join the botnet, such as the IRC channel to
join, the channel password, format of the bots NICK, etc. [41]. HoneyWall10 (a set of tools
used to capture and analyse malware network data) was used for network traffic analysis and
segmentation. Infiltration of the botnet was achieved through a custom developed IRC research
bot which would join the C&C server and monitor commands issued by the botmaster; including
the download of additional executable files. The research goal was to gather sufficient informa-
tion to supply law enforcement and other interested parties to have the C&C server disabled or
dismantled.

The researchers monitored a /24 network range (which equates to 256 IP addresses) for five
months. During this time they were able to track 180 botnets and collected information on
300,000 victim IP addresses. The victim population per botnet averaged a few hundred, however
large botnets up to 50,000 victims were also observed. Their IRC research bot downloaded an
additional 329 binaries of which 201 were classified as malware; with the majority of those being
identified as trojans or backdoors.

A number of botnet analysis frameworks, especially those focused on IRC-based botnets, were
based on this research including [1,16,62,78] but with their own unique implementations, mod-
ifications or extensions.

Cooke et al. [16] used actual Microsoft Windows 2000 and XP computers to act as honeypots
for IRC-based botnet collection. The researchers used network traffic analysis to extract C&C
server network information and the commands issued by the botmaster. Their experiment ran for
twelve sessions of between 12 and 72 hours long during which time the framework was exploited
twice.

8http://dionaea.carnivore.it/
9http://old.honeynet.org/papers/gen2/

10http://projects.honeynet.org/honeywall/

8

Abu Rajab et al. [1] collected IRC-based botnet samples using a low-interaction honeypot
(nepenthes11), executed within a virtualised environment. Network traffic analysis was used
to extract C&C server network information. Their framework differed from Freiling et al. [30]
in that to better understand the required bot registration information, the botnet sample was
executed in an environment where all network traffic from the infected host was directed towards
a sinkhole server – a server which provides a number of services including a modified IRC server.
Once the bot connected to the researchers IRC server registration information was collected, due
to a bot being required to present this information on first connection to a botnet. The bot was
then subjected to a barrage of valid and observed IRC commands and responses recorded, in
order to gain an understanding of the botnet command grammar. Armed with this information,
the framework connected to the actual C&C server using a modified IRC client and botmaster
issued commands were captured.

In addition, the framework made use of DNS cache probing in an attempt to determine the
Internet footprint of a botnet. This was accomplished through an examination of the DNS
Time-To-Live (TTL) value of a C&C server DNS hostname, with the researchers recording those
DNS queries and servers which provided a cached answer. This indicated that a DNS lookup for
the C&C server was previously performed and therefore a host making use of the queried DNS
server for DNS resolution may have been infected.

Zhuge et al. [78] deployed 50 sensors across 16 provinces for twelve months with the aim of mea-
suring the IRC-based botnet activity within China. Botnet collection was accomplished through
the use of a low-interaction honeypot (nepenthes) along-side their own high-interaction honey-
pot, HoneyBow. The virtualised HoneyBow computers were monitored for file-system changes
and, upon the detection of changes, shutdown and all binary executables extracted from the disk
images. Suspected executables were then submitted to HoneyBox, a high-interaction honeypot,
which monitored for behavioural activity using API hooking The intention, to gather C&C server
network information and botnet registration information. Once extracted HoneyBot, a modified
IRC client, connected to the C&C server and captured botmaster issued commands.

Holz et al. [36] continued their research into botnets. However, they shifted their attention to
the Storm botnet [59], which employed a peer-to-peer communication mechanism and focused on
the delivery of spam e-mail messages. They made use of spamtraps, unused e-mail addresses used
to lure spam e-mail messages, to collect initial Storm samples. Additional samples were collected
through extracting URLs from Storm e-mail message and providing these to honeyclients –
honeypots which actively attempt to be infected through the browsing of suspected malicious
websites. The honeyclient was built upon CWSandbox [74], an instrumented malware analysis
sandbox which employed API hooking and DLL injection techniques. Through an automated
analysis process they were able to extract a list of current botnet peers from the Storm worms
configuration file embedded within the bot binary. This information was fed into their research
bot which collected statistics on the number and network information of all peers.

Over a period of five months the researchers discovered that at any one-time between 45,000
and 80,000 active, unique peers were connected to the botnet. During October 2007 alone
they observed a population size of between 426,511 and 1,777,886 victims located across 210
countries.

Riccardi [62] developed the Dorothy Project, a framework for studying IRC-based botnets.
The framework employed similar techniques for botnet collection (honeypots), analysis (network

11http://nepenthes.carnivore.it/

9

traffic analysis) and infiltration (an IRC research bot) as that of Freiling et al. [30]. However,
the framework was naive to the botnet’s command grammar, potentially leading to the research
bot being blocked from connecting to C&C servers were it to provide an incorrect response to a
command.

The framework was later modified by Riccardi et al. [63] to support the analysis of banking
trojans – malware purpose-built to harvest financial information from victim computers. This
required that the framework’s network traffic analysis module support both the Hypertext Trans-
fer Protocol (HTTP) and HTTP Secure (HTTPS) protocols, make use of a local DNS server to
provide modified DNS resolutions, and a webserver running a copy of the supported Internet
banking websites. This modified framework would become infected by malware then, through
providing fake DNS resolution information, drive HTTP or HTTPS traffic to the fake Inter-
net banking website. If the network analysis module detected that the victim computer began
communicating with an information drop site, Internet hosts used for the collection of stolen
financial information configured within the malware sample, it would classify the botnet as tar-
geting customers of the real Internet banking website. Due to the fact that the majority of
financial malware makes use of encryption for both configuration information and network com-
munications, the framework is limited to capturing DNS and traffic flow information and not
their contents.

John et al. [40] developed a framework for studying spam e-mail delivery botnets, which
they named Botlab. The framework monitored spam e-mails delivered to the University of
Washington’s network and classified the messages by the botnet responsible for their delivery.
The framework allowed for infiltration of spam botnets through the execution of bot binaries,
in both actual and virtualised environments, to negate the effects of anti-virtualisation malware,
and extracted information through network traffic analysis. By observing the commands, and
subsequently the e-mail messages sent by the botnet C&C server, they were able to classify the
incoming spam e-mails. Bot binaries were collected from the Castlecops12, Offensive Computing13

and MWCollect14 malware repositories as well as through the browsing of URLs contained within
spam e-mails – which linked to malicious executables or drive-by downloads. The framework
required that all collected executables first be analysed by a human analyst to determine their
propensity to deliver spam e-mails, before inclusion into the framework for analysis.

Eisenbarth and Jones [25] presented mid-level details on the proprietary botnet analysis and
infiltration framework, BladeRunner, developed by Arbor Network’s Security Engineering and
Response Team (a commercial entity). The framework made use of dynamic malware analysis and
the analysis of memory dumps, created during execution of the malicious executable, to extract
information and was purportedly able to analyse all manner of botnet. Bot binaries were collected
through the ”Malware Hunting” feature provided by the commercial VirusTotal (VT) Malware
Intelligence Service – which leverages YARA15 rules to find malware samples of interest. The
behavioural analysis and network traffic captures generated by the sample were downloaded from
VT and matched against known malware fingerprints before being stored. If this information was
not available, the sample was submitted for static and dynamic analysis by the Arbor Security
Engineering and Response Team (ASERT) MCorral system. Once the necessary information has
been gathered, the framework would attempt to infiltrate the botnet and monitor for botmaster

12http://www.castlecops.com/
13http://www.offensivecomputing.net/
14http://www.mwcollect.org/
15http://plusvic.github.io/yara/

10

Table 2.1: Summary of existing botnet analysis frameworks.

Author Collection Analysis Infiltration Protocols

Freiling et al. [30] Honeypots Network Custom bot IRC

Cooke at al. [16] Honeypots Network Original bot IRC

Abu Rajab et al. [1] Honeypots Network Custom bot IRC

Zhuge et al. [78] Honeypots Behavioural Custom bot IRC

Holz et al. [36]
Spamtraps
Honeyclients

Behavioural Custom bot Storm

Riccardi [62] Honeypots Network Custom bot IRC

Riccardi [63] Unknown DNS None HTTP/S

John et al. [40]
Spamtraps
Repositories
Manual

Network Original bot SMTP

Eisenbarth and Jones [25] Repositories Behavioural Custom bot Multiple

issued commands. The framework had the potential to collect unknown malware samples were
a C&C server to instruct the research bot to download new or updated executables.

2.5 Existing Botnet Framework Shortcomings

This section highlights the shortcomings of the automated botnet analysis frameworks presented
in Section 2.4. That is the majority of the frameworks were either purpose-built to study a
specific type of botnet (IRC-based, spam distribution) or family (Storm) and therefore would not
be sufficient as a generic framework without significant modification – as demonstrated in [63]).
A number of the frameworks relied on network traffic analysis to extract the information needed
for successful analysis of the botne – with encrypted communication nullifying this method.
Frameworks which rely on infection through automated botnet propagation, like that of an
Internet worm, would only be in a position to analyse those samples which make contact with
their botnet collection systems. This would limit the number of samples and in-turn families
that could be analysed.

Table 2.1 describes the highlighted frameworks’ implementations of their botnet collection, anal-
ysis and infiltration systems as well as the botnet communication protocols supported.

The shortcomings observed in the reviewed botnet research frameworks are:

• Support for specific communication protocols or botnet types or families: The
frameworks presented in [1, 16, 30, 62, 78] focused on the study of botnets which leveraged
the IRC protocol for communication with their C&C servers, thereby limiting their research
to a subset of all botnet families.

• Limited or no support for encrypted or custom communication protocols: Whilst
the support for botnet family or variant specific command grammar was present in some
of the frameworks i.e. [1, 30, 78], these required the use of IRC as the underlying appli-
cation protocol. In [36], [40], and [63] the frameworks focused on specific botnet families
and therefore required explicit support for their custom communication protocols. These
frameworks were therefore unsuitable for use as a generic botnet analysis framework. Those

11

frameworks which required network analysis, [1,16,30,40,62], could have their research ca-
pabilities severely limited were the botnets to employ encryption of their communications.
Resulting in the framework’s inability to collect information such as the botnet IRC chan-
nels, registration information, and commands issued from the network traffic.

• The collection of botnet samples required automated infection: In [1,16,30,62,78]
the sole means of collecting samples was through the use of honeypots connected to the
Internet. This limited their samples to only those botnets which were capable of or were
utilised to spread infection.

Addressing these shortcomings, along with additional design considerations for modern botnet
analysis frameworks, presented in Section 4.1 formed the basis for the development of this re-
searchers framework.

2.6 Summary

A review of existing research into automated botnet analysis frameworks was presented. The
majority of these frameworks catered for a single means of bot binary collection, which required
that the honeypot be infected before analysis could occur. Network traffic analysis was the
most common means of collecting information on the botnet C&C infrastructure and command
grammar. This limited these frameworks to only those botnet communication protocols which
were unencrypted and observable from a network perspective. Another shortcoming of those
frameworks, which implemented this means of analysis was their lack of support for custom botnet
communication protocols resulting in no or limited insight. The development or customisation of
botnet infiltration research bots was employed by seven of the nine frameworks with varying levels
of sophistication. This could reduce the risks associated with research systems being members of
a potentially malicious botnet (i.e. research bots being used in DDoS attacks) however it did not
guarantee the research bot’s ability to emulate an infected computer fully. This could lead to a
compromise of the research data were a botmaster to deny the research bot access to the botnet,
and/or retaliation by the botmaster, such as through a DDoS of the research infrastructure, in
an attempt to dissuade further research. This is in addition to the research bot’s lack of botnet
command grammar. Due to these shortcomings only the framework presented by Eisenbarth
and Jones [25] could be considered as a generic, multi-botnet analysis framework.

The following chapter provides an introduction to the DarkComet RAT and describes its com-
ponents, communication, and server configuration storage.

12

3
DarkComet

This chapter provides an introduction to and some technical details of the DarkComet RAT and
its operation. This is to provide the reader with background information on the specific RAT
used for the purposes of the case-study.

Section 3.1 provides an introduction to DarkComet RAT, its origin and the versions released.

Section 3.2 provides high-level details on the capabilities of the RAT. In short, the software
provides near ”hands-on-keyboard” access to the infected computer.

Section 3.3 explains the components making up the software namely the client and builder
(Section 3.3.1) and the server (Section 3.3.2). In RAT terminology the server is the component
executed on the infected computer which connects to the client or C&C server. The builder is
the RAT component used to configure and create the bot binary which is to be executed on the
victim computer, the RAT server, for a successful infection to occur.

Section 3.4 provides technical details on where the DarkComet bot configuration information is
stored within the bot binary. It introduces the configuration options available in a minimalist
configuration and the configuration key-values stored within the bot configuration.

Section 3.5 introduces the DarkComet communication protocol, the protocol used between the
RAT server and client, and the bot registration command grammar. It documents the cipher
used to encrypt these communications as well as the static, version specific encryption keys used
to encrypt/decrypt the data.

Section 3.6 provides a review of previous DarkComet software analysis research conducted and
an introduction to some of the better known cyber-espionage campaigns it has been deployed
in.

13

3.1 DarkComet Introduction

A RAT is malware which provides the botmaster remote backdoor access to the infected com-
puter [31]. DarkComet is a popular RAT originally distributed (for free) via the software’s own
website1. The author, Jean-Pierre Lesueur, marketed the software as a support tool to be used by
computers administrators. Its true purpose was plainly understood. The software went through
multiple revisions and bug-fixes according to the release schedule, as per the official DarkComet
website, presented in Table 3.1.

Table 3.1: The DarkComet release schedule.

DarkComet Version Release date

DarkComet RAT v5.4.1 Legacy 01/10/2012 at 09:01

DarkComet RAT v 5.3.1 FIX 1 fwb 04/06/2012 at 20:04

DarkComet RAT v5.2 fwb final 11/04/2012 at 14:58

DarkComet RAT v5.1.1 fwb final 19/03/2012 at 21:31

DarkComet RAT v5 fwb 15/01/2012 at 18:15

DarkComet RAT 4.2 fwb Final Stable 30/10/2011 at 21:52

DarkComet RAT v4.0 20/08/2011 at 17:35

DarkComet RAT v3.3 fwb 25/04/2011 at 21:08

DarkComet RAT v3.2 fwb 17/02/2011 at 21:35

DarkComet RAT 3.1 Fixed version n 1 11/12/2010 at 21:20

DarkComet RAT v2.2 [Last 2.x] 18/10/2010 at 20:53

Following the use of the software to spy on Syrian dissidents [8] the author abandoned develop-
ment [29] and removed download links to the fully functional version of the software. A ”crippled”
version was then released, incapable of building the bot binary to be run on the victim computer.
Instead it could only interact with those computers which had already been infected. However,
copies of the fully functional software are still available for download2.

3.2 DarkComet Capabilities

The DarkComet RAT possesses a wide array of capabilities ranging from a fully functional file
manager to ”fun” capabilities – classified as nuisance capabilities. A listing of theRAT capabilities
is presented in Table 3.2.

These capabilities provide a botmaster ”hands on keyboard” control of the victim computer and
in some cases access to functionality not immediately available to the victim user.

3.3 DarkComet Components

This section provides an overview of the components which make up the DarkComet RAT namely
the server, client and builder.

1http://darkcomet-rat.com/
2http://thepiratebay.se/torrent/7420705/DarkComet RAT Collection

14

Table 3.2: A summary of DarkComet’s capabilities.

Function Category Summary

File Manager Complete file manipulation capabilities including
the download and editing of files on the infected
computer.

Network Functions Allows for executable files to be downloaded from
remote servers and executed. Additionally it can
be used to scan for other computers on the Local
Area Network, scan for WiFi networks in range and
monitor network activity.

Nuisance Functions These include remote chat functionality, the dis-
abling of Windows components such as the ”Start”
button, Windows task manager and the playing of
”Piano” sounds.

Password Stealing Steal saved passwords from Internet browsers such
as Chrome, Firefox, Opera, Safari and Internet Ex-
plorer.

Remote Scripting Allows the remote execution of HTML, Windows
batch and Visual Basic scripts.

Surveillance functions Capabilities include the remote viewing of the vic-
tim’s Windows desktop and webcam as well as lis-
tening to remote audio through an installed micro-
phone. The logging of all user keystrokes whichcan
be captured directly by the C&C server compo-
nent or uploaded to a File Transfer Protocol (FTP)
server when the C&C server is unavailable.

System Functions The ability to restart, shutdown or log the current
user off, as well as execute a shell on the remote
computer.

System Monitoring Monitoring of the remote systems processes, reg-
istry, and startup applications.

Software Updates Used to update the DarkComet installation with
new configurations or software versions.

15

For stealth reasons the server module provides no feedback, unless configured to the contrary,
to a victim regarding its successful execution. All activities occur in the background. The
server executes within its own process, named according to the configuration options set by the
botmaster at bot binary build time.

3.3.1 DarkComet Client and Builder

The DarkComet client module performs two main functions; that of the bot binary builder and
the C&C server used for issuing commands to infected hosts. The C&C component is a Graphical
User Interface (GUI) providing ease of use for the botmaster and reduces the skills required to
control the infected computers or servers. The DarkComet client main interface, with a single
victim host connected, is depicted in Figure 3.1.

Figure 3.1: The DarkComet client/operator main interface.

The ”Users” tab of the DarkComet client provides the botmaster with an overview of the con-
nected and live victim hosts along with information relating to a victim computer’s hardware
and operating system. The botmaster can assign victim hosts to preconfigured or custom groups
with the default being ”unclassed” (as depicted in Figure 3.1). This is a feature used to make
administration of large botnets easier. Automated tasks for a victim host to perform on connec-
tion to the C&C server can be configured via the ”On Connect” tab. ”User logs” displays the
status of these automatic tasks per victim host along with the date and time of the update. The
”Socket / Net” tab displays the DarkComet client’s listening TCP port and any software status
messages.

The builder component forms part of the DarkComet client and is responsible for creating the
bot binary, which is executed on the victim computer. Once the botmaster has configured the bot
he uses the ”build” function to create the bot binary. The builder is accessed via the DarkComet
client main screen as depicted in Figure 3.2.

The botmaster can choose to build a DarkComet bot binary using the ”Minimalist” or ”Full
editor” menus. The minimalist option (Figure 3.3) allows for the configuration of the follow-
ing:

• Stub ID

• C&C server IP address or DNS hostname and port

• if the bot binary will be installed on the victim and the registry keyname used

• the parent and child directories

• the executable’s filename

• the icon to display within the victim’s file explorer applications

16

Figure 3.2: DarkComet client main menu.

Figure 3.3: DarkComet builder minimalist configuration.

17

The ”Full editor” allows for greater control of the DarkComet bot binary and therefore pro-
vides significantly more configuration options. The configuration options menu is depicted in
Figure 3.4.

Figure 3.4: DarkComet builder ”Full editor” menu.

A full listing of all available configuration options, per sub-menu, is available in Appendix
A.

The configuration options set by the botmaster are included in the DarkComet bot binary during
the building of the bot binary and stored in a RC4-256 [66] encrypted format. Please see
Section 3.4 for further information on how this configuration information is stored within the
bot binary.

3.3.2 DarkComet Server

The DarkComet server is the component that is executed on the victim computer resulting in
an infection. The infection process is silent in that no feedback is provided to the victim that a
successful infection has occurred – which is to be expected. This component is responsible for
the registration of the victim computer with the C&C server as well as receiving and executing
of botmaster commands. As presented in Section 3.2 DarkComet provides extensive cyber-
espionage and other information stealing capabilities to the botmaster.

Modifications made to the victim computer by the bot binary depend on the configuration by
the DarkComet botmaster but may include:

• the creation of registry settings so that an infection survives a reboot of the victim computer

• changes to the Microsoft Windows host firewall to ensure successful communication with
the C&C server

• changes to the HOST file which is used for DNS host resolution prior to external systems
being queried

• the recording of a victims keystrokes which could contain usernames, passwords, emails
and sensitive financial information.

18

Whilst a typical infection is silent the botmaster may bundle the bot binary with other software
which does interact with a victim user to hide its true intention. This is further discussed in
Section 6.2.

3.4 DarkComet Configuration

The configuration settings, set by the botmaster at build time, are stored within the RCDATA
directory of the Resources section of the DarkComet server Portable Executable (PE). For Dark-
Comet version 3 to 5 binaries the configuration settings are contained as separate key-value pairs
within this directory. As can be seen in Figure 3.5 the keys are stored in clear-text however, the
values are RC4-256 encrypted with a version specific static key. These static encryption keys are
discussed further in Section 5.2.1.

Figure 3.5: DarkComet version 4 binary showing configuration information.

In DarkComet version 5.1 and later the configuration settings are also stored within the RCDATA
directory of the PE. However, all settings are contained within a single ”DCDATA” record. This
record contains all key-value pairs as a concatenated string delimited by the newline charac-
ter. Again, this information is encrypted with the RC4-256 algorithm using static encryption
keys (Section 5.2.1). An example of a DarkComet version 5.1 DCDATA record is shown in
Figure 3.6.

Once the configuration key-value pairs are decrypted, a total of 43 different configuration settings
can be embedded within the DarkComet bot binary. Only those settings which have been
configured by the botmaster are placed within the binary. A full listing of all configuration
settings is available in Appendix B with Table 3.3 listing only those set through a minimalist
configuration. This information was extracted through the author building a DarkComet version
5.3 minimalist bot binary, extracting the DCDATA configuration information, and decrypting
the key-value pairs using a Python3 script. This script formed the basis for the case-study Static

3http://www.python.org/

19

Figure 3.6: DarkComet version 5.1 binary showing encrypted configuration information.

Analysis module discussed in Section 5.2.1.

The majority of the configuration keys and associated values are configurable via the DarkComet
builder, with the exception of ”GENCODE” – the purpose of this key-value pair is currently un-
known. An example of an extracted and decrypted configuration is presented in Listing 5.5.

3.5 DarkComet Communication

Communication between the victim computer and the DarkComet C&C server makes use of a
custom TCP protocol, which employs RC4-256 encryption for confidentiality and authentication.
Whilst the same encryption algorithm is used, the way in which the encryption key is derived is
different [2] than that used to encrypt the DarkComet configuration embedded within the bot
binary. Instead of being a static key, during the configuration of the bot binary the botmaster
can enter a ”Security Password” which is then used for encrypting communications and authen-
ticating victim computers. This password is appended to the version specific static encryption
key used for encrypting the configuration information – listed in Table 5.3. Thus, were an at-
tacker to use ”1234567890” as the ”Security Password”, for a DarkComet V5.1+ binary, the full
communication key would be ”#KCMDDC51#-8901234567890”. Should the botmaster not
choose to use an additional password, the default communication key of ”#KCMDDC51#-890”
would be used for securing communications. This final communication key is stored as the value
for the ”PWD” key-value pair within the DarkComet configuration settings.

An example DarkComet handshake is presented in Listing 3.1 and shows both the RC4-256
encrypted and decrypted commands and responses [24]. On initial connection (line 2) the victim
sends no data, however the C&C server responds with the ”IDTYPE” verb (line 6). This elicits
a response of ”SERVER” by the victim (line 10) thereby announcing its capabilities. This
also demonstrates to the C&C server that the victim possesses the correct communication key,
thereby authenticating itself. The C&C server responds with ”GetSIN192.168.56.1—178186”(line
14), which contains the public IP address of the C&C server ”192.168.56.1” and prompts the
victim to respond with its system information (line 24). A breakdown of this system information

20

Table 3.3: DarkComet configuration embedded within the DarkComet bot binary.

Setting Key Menu Location Type Value Example Description

EDTPATH Module Startup String MSDCSC\msdcsc.exe Child directory and filename
of the DarkComet server exe-
cutable.

INSTALL Module Startup Bool 1 Enable (1) or disable (0)
the starting of the Dark-
Comet bot binary on Win-
dows startup – thereby sur-
viving a reboot of the victim
computer.

KEYNAME Module Startup String MicroUpdate The registry key name to
use when installing persis-
tence functionality. The
registry key is created under
HKCU\Software\Microsoft\

Windows\CurrentVersion\

Run or values are inserted
into the ”Userinit” key
under HKLM\SOFTWARE\

Microsoft\WindowsNT\

CurrentVersion\Winlogon.

NETDATA Network Settings String 127.0.0.1:1604 The DarkComet C&C server
IP address(es)/DNS host-
name(s) and TCP port(s)
details. IP address and TCP
port are separated by a colon
(’:’).

SID Main Settings String Guest16 An alpha-numeric internal
identifier often used by the
botmaster to differentiate
between bots from different
Phishing or spam campaigns.

21

is available in Listing 3.2. Once this handshake has been completed, the victim is considered
registered and ready to accept commands from the C&C server.

Listing 3.1: Decrypted capture of an initial DarkComet handshake.

1 Victim -> C&C

2 <nothing>

3
4 C&C -> Victim

5 Encrypted: BF7CAB464EFB

6 Decrypted: IDTYPE

7
8 Victim -> C&C

9 Encrypted: A57DAD495BEC

10 Decrypted: SERVER

11
12 C&C -> Victim

13 Encrypted: B15D8B4C57F0BE8B06F81A2BE7DD3607C7F4768BB1F5251B39

14 Decrypted: GetSIN192.168.56.1|178186

15
16 Victim -> C&C

17 Encrypted:

9F5699707BCDC8C751A55F2CE9AC6E5887B93B83B4E325153755DC4C73F2FBED4F702D5AAAF4BFF8

18 5FFC48684006BAB160A064D5F7C8AB43C0EECFAF53DF018E064F3E62B6E89C80543BDAD3A1A8859A7E41ED5C8C1

19 DB7DC4326E3AE79175544C0265CE3DA2CD475A1866D5DCD91169C94E689644057AD3DED543FCCABA04F4E535343

20 2A9A6EF4AC73663711E5D8A79330600D3A0B1A4D682324A909BF3882F29203FD44C51DC4EB2DDC9401FF32A6338

21 11E983CFBBDE4DEB151DE3EC630B72F85F507147F9E3334CE8BEF1EAAE5DA0994DFBF41FD9E4F3295A547ABDB4F

22 ADD24CF6A57D7B20268DB455787C3BC1B6CB01405EAAF871F00F3517DEE8599D7699869317B6C6B81FD92DFDCE9A

23
24 Decrypted: infoesGuest16_min|192.168.56.1 / [192.168.56.100] : 1604|DC2-CNC-PC /

dc2-cnc|178186|0s|Windows 7 [7600] 32 bit (C:\)|- (Limited)||US|Program

Manager|{e29ac6c0-7037-11de-816d-806e6f6e6963-271086811}|24%|English (United

States) US / -- |2/22/2015 at 1:29:59 AM|5.3.0

25
26 Victim -> C&C

27 Encrypted: D573BA5A4EFFC3FB629308

28 Decrypted: #KEEPALIVE#

During idle periods, when no communications are being sent between the C&C server and victim,
the victim periodically sends ”keepalive” messages to the C&C server every 20 seconds. This is
used to inform the C&C server it that the victim is still online and available to accept commands
(line 28). In DarkComet versions prior to 5.0 these keepalive messages were unencrypted allowing
for the creation of robust Intrusion Detection System (IDS) rules [2] to detect DarkComet infected
computers and their corresponding C&C servers. However, beginning with version 5.0 keepalive
messages are encrypted, preventing detection by these IDS rules.

Listing 3.2: Breakdown of the system information response during an initial DarkComet hand-
shake.

Server-ID| Public IP / [Private IP] : Server Port|Computer-Name / Username||System

Idle Time (seconds)|Operating System, CPU Architecture, and Installation

Drive|Admin Privileges|Ping Time (milliseconds)|Country|Active Window|UUID|% Free

22

RAM|Locale Settings / -- |Date and time of first infection|DarkComet Version

The Unique User Identifier (UUID) is calculated at DarkComet server install time and does
not change even if a victim were to be infected through multiple bot binaries corresponding
to different C&C’s. This UUID allows C&C’s to track DarkComet victims even if their public
or private IP addresses were to change. This UUID was used by this author to differentiate
between victim hosts and also to identify victims which communicate with C&C’s from multiple,
different RAT networks. This would point to a host being a member of multiple botnets operated
by different botmasters potentially due to multiple infections.

3.6 Previous DarkComet Research

This section will provide an overview of prior research into DarkComet’s inner-workings and
capabilities.

Aylward [2] provides technical details on how to extract the DarkComet communication and
configuration encryption key from a DarkComet version 4 bot binary – through the use of a
debugger. Additionally, the author provides the default encryption key for DarkComet versions
3 and 4, ”#KCMDDC2#-890” and ”#KCMDDC4#-890” respectively.

Edwards [24] studies DarkComet with the intention of creating a research bot capable of mim-
icking an infected host and therefore able to infiltrate a DarkComet botnet. The author provides
in-depth technical information regarding the decryption functions used within DarkComet, in-
cluding the default encryption keys used by DarkComet versions 4.0, 4.2 and 5.0. Information
on the communication protocol used between the victim and C&C is also provided. This infor-
mation, combined with that in [2], is used in a number of modules within the framework.

Denbow and Hertz [20] performed a study into vulnerabilities which exist in the DarkComet,
Bandook, CyberGate and Xtreme RAT software. In DarkComet they discovered a vulnerabil-
ity in the QUICKUP functionality, named after the DarkComet function which allows for the
downloading of arbitrary files from a C&C. In their paper the authors demonstrate the ability to
download the ”comet.db”, the SQLite database file containing information on all the infected vic-
tims that have successfully registered with the C&C server. This research refines this QUICKUP
exploit in that successful exploitation does not result in the registered with a C&C server and
an entry being written to the DarkComet log file

AlienVault released a Python script capable of extracting the configuration from an un-obfuscated
DarkComet version 5.0 bot binary4. This information was used as the basis for the configura-
tion extraction functionality of the Static Analysis module. The scripts which was extended by
this researcher to support DarkComet versions 2 to 5.2 binaries. Kujawa [46] provides extensive
information on the capabilities and functionality of DarkComet.

Gardsen [33] used API hooking on an infected host to capture the API calls used by DarkComet
when the video and audio capture functions where enabled. The author proposed that infection of
an endpoint could be determined through monitoring the APIs used and was able to differentiate
between malicious and non-malicious software using this method.

4http://code.google.com/p/alienvault-labs-garage/downloads/detail?name=extract config from binary.py

23

DarkComet has been and continues to be used in a number of infection and cyber-espionage
campaigns around the world. In the following paragraphs information is provided on two prolific
campaigns which have been discovered by malware researchers. This is to highlight the range of
victims which are targeted by DarkComet botmasters and their varied intentions.

Galperin and Marquis-Boire [32] report on the use of DarkComet against Syrian opposition
activists. The victim computers are infected through the use of social-engineering techniques
whereby a Skype message is sent to the intended victim purporting to be from a friend of the
victim. The messages contains a bot binary disguised as a PDF document that once opened a
decoy PDF document is presented to the victim and the DarkComet bot binary is executed –
resulting in the computer being infected.

Wilson [75] details botnet campaigns utilising DarkComet and some of the unique configu-
rations used. For instance, the modification of the victims ”HOSTS” file thereby redirecting
communications intended for the targeted sites to those controlled by the attacker. Wilson notes
attacks being launched against American government employees for cyber-espionage reasons and
players of a popular online computer game for the theft of in-game assets – the intention being
the sale of these virtual goods for real-world money.

3.7 DarkComet Summary

DarkComet is a RAT used in a number of cyber-espionage campaigns – even against the gov-
ernment dissidents in Syria and players of an online computer game. The software allows near
”hands-on-keyboard” access to the wielder. It includes the ability to disable operating system
functionality, eavesdrop on victims through enabling the infected computers microphone and
webcam, and stealing sensitive information such as credentials. The software comprises three
components the C&C server software (used for issuing commands to bots), the builder (used to
create the bot binary), and the server (which is executed on the victim computer). Configuration
information is stored within the bot binary and consists of key-value pairs which determine the
behaviour of the bot once executed. This configuration information is stored in differing formats
between DarkComet versions and is encrypted with the RC4-256 algorithm. Due to the pre-
dictable layout of the bot binary and the well-known static, version dependant encryption keys
it is possible to extract the bot configuration from an unobfuscated bot binary through static
analysis methods. Communication between the C&C server and victim computer is conducted
through a custom protocol which is transported over TCP and is also RC4-256 encrypted. The
use of RC4-256 is to prevent eavesdropping on communications and the authentication of the
victim computer with the C&C server.

In Chapter 4, specifically Section 4.1, additional design criteria for consideration of a modern
botnet analysis framework is presented. Section 4.2 presents how the framework developed in
this research overcame the framework shortcomings presented earlier and how these additional
considerations were incorporated.

24

4
Framework Design

As stated, the intention of this research was to design and implement a generic botnet analysis
framework which could be used to study any manner of bot binary. This framework should
also aim to overcome the shortcomings of the existing frameworks (presented in Section 2.5)
along with additional considerations and constraints which designers of modern botnet analysis
frameworks are required to take cognisance of.

Section 4.1 introduces these additional design considerations and how these were incorporated
in this researcher’s framework alongside research-specific constraints.

Section 4.2 provides the technical details of how the framework was designed, developed and
implemented. This framework is comprised of a number of disparate yet interconnected systems
each with their own input, outputs and distinct functions.

In Section 4.3, Section 4.4, and Section 4.5 the Sample Collection, Sample Analysis, and Infil-
tration systems are presented.

Section 4.6 provides details on the message queueing system which was used for intra-system
communication and allowed framework to be event-driven, as opposed to schedule-driven, and
other benefits realised due to this.

4.1 Framework Design Considerations

In this section considerations for the design of a modern automated botnet analysis framework
along with additional constraints are presented. Included is an overview of how the framework
addressed these considerations and constraints.

In his paper Nazario [53] provides the following advice for the successful implementation of a
modern botnet analysis framework:

25

1. Stealth: An analysis framework must avoid detection by the botmaster so as to continue
observation and prevent retaliation, through for example a DDoS attack.

2. Scalability: The use of actual or virtualised hosts is acceptable. However, their resource
requirements must allow an analysis framework to scale to support hundreds or thousands
of botnet infiltrations without requiring considerable resources.

3. Sample collection: Relying on a single source for bot binary collection could limit anal-
ysis. For instance, utilising only a honeypot for sample collection could limit collection to
only those botnets that propagate via ”scan and infect” type infection vectors. Sample
collection would further be limited through the honeypots supported network protocols
and location – geographic or network.

4. Botnet grammar: Possessing only a superficial understanding of the commands and
responses used within a botnet would not comply with the requirements for stealth and
potentially limit the amount of information that can be extracted during an infiltration.
As such, custom research bots are required. It would be naive to make use of a botnet
infected honeypot due to potential issues with scalability and increasing the danger of
becoming a participant in nefarious activities – such as the spreading of an infection to
other computers.

5. Anti-debugging: The rise in the number of botnets which employ debugger and virtuali-
sation detection techniques have increased. Once detected, malware could alter its normal
execution flow in an effort to appear benign. This further dissuades the use of honeypots
and sandboxes for analysis.

6. Protocol support: With the migration away from IRC-based botnets to other less suspi-
cious and ubiquitous protocols, such as HTTP, frameworks that support a single protocol
will soon find themselves limited.

The remainder of this chapter presents in-detail the systems which comprise the framework,
their intended function, inner workings, and interconnection to other systems within the frame-
work.

4.2 Framework Details

The proposed framework consists of three major systems, namely the Sample Collection, Sample
Analysis and Infiltration systems. Each system may consist of multiple modules each respon-
sible for the completion of a specific task. For example the acquisition of bot binaries or their
subsequent static analysis.

The Sample Collection system is presented in Section 4.3. This system comprises the Sample Ac-
quisition (Section 4.3.1) and Metadata Collection modules (Section 4.3.2). The Sample Analysis
system (Section 4.4) comprises the Static (Section 4.4.1) and Dynamic Analysis (Section 4.4.2)
modules. The Infiltration System (Section 4.5) consists of the C&C Liveness (Section 4.5.1) and
C&C Infiltration modules (Section 4.5.2). Section 4.6 provides details on the use of a message
queueing system which allowed for the framework to be converted from being schedule- to event-
driven, providing a number of advantages such as near real-time analysis of newly acquired bot
binaries.

26

Figure 4.1: Framework process flow.

In each section details are provided on the fundamental tasks assigned to each system or module,
along with each system’s incorporation of the design considerations discussed in Section 4.1. A
high-level process flow for a generic implementation of the malware analysis framework is pre-
sented in Figure 4.1. The figure details preceding and subsequent systems or modules, where
success criteria decisions are used, and when each system or module will interact with the frame-
work’s datastore and/or Hard Disk Drive (HDD) storage area.

A brief introduction to each system and module follows:

1. Sample Collection System: Responsible for the downloading and storage of bot binaries
and associated metadata.

(a) Sample Acquisition Module: Acquired new bot binaries from the malware source.
These could be multiple sources such as a honeypot, honeyclient or malware repository.
A successful acquisition generated events received by the Metadata Collection module
and Sample Analysis system.

(b) Metadata Collection Module: Gathered metadata information for each bot binary
either from the malware source or through extension of the module.

27

2. Sample Analysis System: Responsible for the analysis of all acquired bot binaries. It
determined which analysis to perform based on system/framework configuration or bot
binary metadata.

(a) Static Analysis Module: Performed static analysis on a bot binary. A successful
analysis resulted in an event being communicated to the Infiltration System or a
failure event communicated to the Dynamic Analysis module, prompting additional
bot binary analysis.

(b) Dynamic Analysis Module: Performed dynamic analysis on a bot binary, gener-
ating a success event received by the Infiltration System.

3. Infiltration System: Responsible for all interactions with a C&C server.

(a) C&C Liveness Module: Determined if the C&C server was ”live” and therefore
available for infiltration. A success event would be communicated to the C&C Infil-
tration Module(s). A failure event would be recorded and those C&C servers found
unresponsive for a predefined time period marked ”dead” and removed from further
interactions.

(b) C&C Infiltration Module(s): Through the implementation of sufficient botnet
command grammar this module would mimic a typical bot and gather command
information. Multiple sub-modules could be implemented to fulfil the modules objec-
tives.

The remainder of this section will detail generic implementations for each system making up the
analysis framework along with system- or module-internal process flows, and where necessary
highlight specific design considerations.

4.3 Sample Collection System

The Sample Collection system was responsible for the collection of both bot binaries and meta-
data. As such it was the entry point for all bot binaries entering the framework. This system
comprised the Sample Acquisition module (Section 4.3.1), responsible for the acquisition of anal-
ysis samples, and the Sample Metadata Collection module (Section 4.3.2), which gathered meta-
data information for all acquired bot binaries. All samples analysed by the framework entered
at this system before subsequent processing by the Sample Analysis System (Section 4.4).

4.3.1 Sample Acquisition Module

The Sample Acquisition Module is ultimately responsible for the acquisition, storage and cata-
loguing of all unique bot binaries entering the framework.

Once successfully acquired, a unique sample identifier is generated by the module for cataloguing
purposes. The identifier and malware source are then recorded in the framework datastore for
referencing by the subsequent Sample Metadata Collection module and Sample Analysis system.
Validating the successful acquisition of a bot binary would be dependent on the malware collec-
tion source and could include the use of cryptographic hash calculations of the sample’s content
to ensure that the sample received was identical to that of the sample available. Should this

28

Figure 4.2: Sample Acquisition module process flow.

validation fail, a retry mechanism could be employed until a sample was successfully acquired or
a retry limit is reached. Any number of sample sources, or combination thereof, could be used
for the acquisition of bot binaries. For example, a honeypot could collect network-propagating
bot binaries whilst non-network propagating bot binaries could be collected via a malware repos-
itory. This addresses the single source collection shortcomings of a number of the frameworks
presented in Section 2.5. Additionally, this module incorporates the ”Sample Collection” design
consideration presented in Section 4.1, through allowing for the collection of not only ”scan and
infect” bot binaries or families but also those which are not self-propagating. The process flow
for this module is illustrated in Figure 4.2.

Bot binaries available for acquisition are downloaded and the success criteria examined. Should
a bot binary not have been successfully acquired the download is retried and after a set number
of retries, aborted. A successful download would result in the bot binary being stored on the
framework’s HDD for use by subsequent systems. A sample identifier is generated and recorded
in the framework’s datastore along with source of the bot binary. This sample identifier is used
throughout the framework to identify a specific bot binary. Success events generated by the
module are communicated to the Metadata Collection module and Sample Analysis System for
further process of the bot binary.

A message detailing the successful acquisition of a new bot binary along with the sample identifier
would then be placed on the message queue and used as an event to trigger further processing
and logging. An example implementation of the Sample Acquisition module is available in the
case-study – in Section 5.1.1.

4.3.2 Sample Metadata Collection Module

The function of the Sample Metadata Collection module is to collect and record information
of the bot binary itself. This module receives events from the Sample Acquisition module and
utilises the Sample Acquisition module-generated sample identifier for cross-referencing.

The metadata information collected or generated should include the timestamp of when the
bot binary was first acquired, the file size, the file type (for example .exe or .doc), and the
original filename. This information could be collected from either malware source or generated
by the module itself through extension of the module or through additional metadata generation

29

Figure 4.3: Metadata collection module process flow.

modules. An example of extending the module is provided during the case-study (in Section 6.2.5)
whereby Context Triggered Piecewise Hashes (CTPH) are used to determine the similarity of bot
binaries exclusive of the DarkComet configuration. A process flow for this module is presented
in Figure 4.3.

The existence of a sample identifier on the Metadata Collection message queue, placed there
by the Sample Acquisition module, prompts the collection of bot binary metadata information
from the malware source or module extensions. This information is stored within the framework
datastore using the sample identifier as a reference. By default this module does not generate
events for consumption by framework modules, however events could be generated and received
by a logging system. Information in the logging system could be used to determine system
health or to aid in troubleshooting. An example implementation is available in the case-study
in Section 5.1.2 and the outcomes of an analysis of this information in Section 6.2.

4.4 Sample Analysis System

The Sample Analysis system comprises two modules namely the Static (Section 4.4.1) and Dy-
namic Analysis (Section 4.4.2) modules. As their names suggest the Static Analysis module
employs static analysis methods and the Dynamic Analysis module dynamic analysis methods,
used to extract the botnet configuration information for a bot binary under analysis. Through
the definition of success criteria the system is able to determine if configuration information ex-
traction was successful. This results in an event being generated to inform subsequent framework
systems of the availability of new information for processing or the processing of a bot binary by
an additional analysis module.

Whilst some inter-dependency exists between these two modules they operate independently
and therefore neither module is a requirement for a successful framework implementation. It is
possible that an analysis method is not feasible or suitable for certain types of malware families.
In such instances either of the analysis modules may be bypassed and initial analysis can be
conducted by the other analysis module instead. This allows for, for instance, the implementation
of the Static Analysis module without the need for a Dynamic Analysis module.

30

Figure 4.4: Sample Analysis System analysis process flow.

Once the botnet configuration information has been successfully extracted it is stored within the
framework datastore for later analysis. A high-level overview of the process flow of an example
Sample Analysis system, incorporating both static and dynamic analysis modules, is presented
in Figure 4.4.

The existence of a sample identifier in the Sample Analysis system message queue prompts the
system to submit the relevant bot binary to the Static Analysis module. If a successful botnet
configuration extraction were to occur this information would be recorded in the framework
datastore and a success event placed in the Infiltration System message queue, for subsequent
processing. A failure event would result in a message being placed on the Dynamic Analysis
module message queue resulting in dynamic analysis of the bot binary. The Dynamic Analysis
module would then be responsible for placing a success event in the Infiltration System message
queue.

4.4.1 Static Analysis Module

The Static Analysis module attempts bot configuration information extraction by employing
static analysis methods – introduced in Section 2.1.1). The intention is to extract as much bot
configuration information from the bot binary as possible, which could include:

• the C&C server IP address or DNS hostname

• the TCP or User Datagram Protocol (UDP) communication port

• passwords or encryption keys used by the malware

In essence, a successfully implemented Static Analysis module would be able to extract sufficient
information for the Infiltration System to communicate with a botnet C&C server and mimic
a bot’s configuration. The Static Analysis module is the preferred module for the extraction
of botnet configuration data over the dynamic analysis module as it typically requires fewer re-
sources. This is due to bot binaries being analysed without execution and therefore not requiring
the use of typically resource intensive dynamic analysis methods.

A number of static analysis methods for botnet configuration extraction exist with the major de-
termining factor being the method of configuration data storage within the bot binary. Through
the inclusion of multiple configuration rippers (Section 2.1.1) within the module it is possible

31

to support the analysis of multiple malware families or variants. For example, through incor-
porating just the configuration ripper scripts provided by1 would allow the module to support
configuration extraction from 28 different botnet families.

This low resource requirement and support for multiple botnet families allows great scalability
potential and therefore complies with the stated ”Scalability” design consideration presented in
Section 4.1.

Another consideration is the ability for the module to support archive file formats. It has become
a common tactic for malware to be distributed within an archive file [9, 52,73] in an attempt to
bypass content restrictions placed on e-mails or Internet downloads containing executable files
by organisations. At a minimum the popular Zip, RAR, 7-zip, Windows Cabinet and GZ archive
file formats should be supported. However, this would depend on the file formats provided by
the malware source.

Through use of success criteria this module is able to determine whether all or the minimum
required information was successfully extracted. This can be accomplished through, for example,
the presence of a bot configuration value which is only available subsequent to a successful config-
uration extraction. Were extraction deemed unsuccessful the bot binary could then be presented
to additional static analysis modules or the dynamic analysis module for further analysis.

A generic Static Analysis module process flow is presented in Figure 4.5. Once a malware
sample is presented for analysis the module first determines the file format and found to be
the default file format for a bot binary bot, configuration extraction occurs. If the file format
is determined to be that of another supported file format, such as the archive file formats Zip
and RAR, the malware sample would first require pre-processing before configuration extraction
could occur. For exmaple, this could take the form of archive decompression for archive file
formats. Utilising success criteria if the extraction is deemed successful a message is generated
and placed on the Infiltration System message queue for further processing. Additionally, any
extracted configuration information is stored within the frameworks datastore for later analysis.
Were the success criteria deemed a failure a message would be placed on the Dynamic Analysis
Module queue for bot configuration extraction through dynamic analysis methods. An example
implementation is available in the case-study in Section 5.2.1.

1http://github.com/kevthehermit/RATDecoders/

32

Figure 4.5: A generic Static Analysis module process flow.

4.4.2 Dynamic Analysis Module

This module employs the use of dynamic malware analysis methods to extract botnet configura-
tion data. This includes the use of malware analysis sandboxes, honeypots, the automation of a
disassembler, memory analysis, or any combination of methods. Regardless of the methods used,
the success criteria for this module is the extraction of the botnet configuration data, the same
data required from the Static Analysis module, which would be stored within the framework’s
datastore.

It must be noted that an increase in sandbox-aware malware has been reported [11]. Current
methods of sandbox detection includes the querying and analysis of virtualisation software-
specific registry keys, the presence of driver files, and the analysis of hardware identifiers [11]
– such as for HDD drives. This requires that implementers employ the use of ”VM hiding
techniques” and procedures. The most popular of which is employing API hooks that monitor
for sandbox-detection activities and return a faked response to match that of an actual computer
[27, 55]. The intention is to prevent malware from detecting its execution within an analysis
environment and altering its execution path from that of its usual behaviour.

An additional design consideration is the inclusion of methods to defeat the use of bot con-
figuration information obfuscation. At some point during the malware’s execution, the bot

33

Figure 4.6: The Dynamic Analysis module process flow.

configuration must be available for use by the software and it is at this point that configuration
extraction can occur. A popular method employed by malware authors is to deobfuscate this
information in Random Access Memory (RAM) during execution and prevent the information
from being written to the HDD. As such, memory analysis of malware infected computers has
become common place by researchers and analysts with many standalone tools being available
(such as The Volatility Framework2 and YARA3) as well as the integration of these tools in other
tools. A powerful example of this integration is that of YARA integration with Cuckoo Sand-
box4. The end result is that a bot binary is subjected to both behavioural and memory analysis
methods therefore allowing investigation of not only the changes made to an infected computer
but, also the ability to extract bot configuration information in an automated fashion. In this
way the Dynamic Analysis module fulfils the Anti-Debugging design consideration presented in
Section 4.1.

Again, this module employs the use of success criteria to determine whether a bot binary has
yielded the required configuration information for further processing by the framework – much
the same as the Static Analysis module (see Section 4.4.1). However, the inclusion of additional
analysis methods such as memory analysis can be conducted due to a success criteria failure or
simply as an additional analysis method.

The process flow for a generic Dynamic Analysis module is presented in Figure 4.6 that in-

2http://www.volatilityfoundation.org/
3http://plusvic.github.io/yara/
4http://yara.readthedocs.org/en/latest/modules/cuckoo.html

34

corporates one or more analysis methods. An implementation is envisaged whereby the Free
and Open-Source Software (FOSS) Cuckoo sandbox software5, which uses API hooking within
an instrumented virtual environment, is employed and behavioural data is harvested and/or an
automated memory analysis process is performed. Once the bot configuration information has
been extracted from the bot binary an event is generated and placed on the Infiltration Systems
message-queue for further processing.

4.5 Infiltration System

The infiltration system is responsible for all interactions with botnet C&C servers and comprises
of two modules, namely the C&C Liveness module and the C&C Interaction module.

This system has four major design considerations namely Stealth, Scalability, the implementation
of sufficient Botnet Grammar, and Protocol Support (see Section 4.1). These should be included
in the implementation of all modules making up the system. Stealth and Botnet Grammar
speak to the care which must be taken when interacting with botnet C&C servers, to ensure
that the framework is not detected, banned or retaliated against by a botmaster. Whilst there
are no guarantees that even a perfectly functioning botnet infiltration system will not raise the
suspicions of a botmaster, by adhering to these two design considerations the risk of detection
can be lowered. Both Stealth and Botnet Grammar requires a thorough analysis and sufficient
implementation of a botnet’s grammar, which is an analysis of the botnet specific commands and
the expected responses to ensure that the suspicions of a botmaster are not raised. For example,
were a botmaster to issue a command and the response from the framework differs from expected,
suspicions may be raised. Whilst a complete implementation of a botnet’s grammar may not be
feasible contingency plans must be considered. This is discussed further in Section 4.5.2.

Additional Stealth design consideration implementations might be to make use of proxy or relay
networks (such as The Onion Router (TOR)6) to mask the true source network of the framework.
For instance, a framework whose source IP address is registered to an anti-malware solution
provider could find itself interfered with by a botmaster. This could result in a compromise of
the data it could potentially gather. Implementing a solution which allows the ability to change
source IP address affords a researcher, whose framework has been detected, an opportunity to
try again through changing their source IP address and circumventing a ban. Some botmasters
configure their botnets to only allow bots from countries or organisations of interest. Having
the ability to specify which country or organisation a framework appears to originate from, may
allow the framework to infiltrate botnets which impose such restrictions.

Scalability requires that the resource requirements for certain components within the Infiltration
System be lower than that of an infected host. The intention is to allow the framework the
ability to simultaneously infiltrate large numbers of botnets, often hundreds or thousands, which
is often not possible through the monitoring of an infected research system. This lowers resource
requirements and increases the amount of data which can be collected by the framework.

The use of custom communication protocols by botnet software requires that a generic botnet
analysis framework, such as that presented in this work, not be limited by the protocols it
supports. Whilst common protocols (such as IRC and HTTP) are still widely used for botnet

5http://www.cuckoosandbox.org/
6http://www.torproject.org/

35

Figure 4.7: Infiltration System process flow.

communication, frameworks that are capable of supporting only common protocols limit the
botnet families and variants they are able to analyse.

An overview of the infiltration module process flow is presented in Figure 4.7. Upon a message
being received in the Infiltration System message queue the C&C Liveness module determines if
the C&C server is available and accepting connections. A successful ”liveness test” triggers the
C&C Interaction module resulting in the commencement of infiltration activities.

4.5.1 C&C Liveness Module

This module fulfils two responsibilities the first being to determine whether a C&C server is
responding and available for infiltration, referred to as ”live”, and those that are not responding
or available, referred to as ”dead”. Liveness testing, that is the testing for a ”live” C&C server,
can take the form of a research bot connecting to and registering with a botnet in a manner
which is identical to that of a valid bot. Through monitoring the interactions between the
research bot and C&C server it is possible to determine whether the C&C server is responding
as expected, confirming that the C&C server is in fact ”live”. Once a successful connection
has been established further interaction by the C&C Interaction module Section 4.5.2 should
commence.

The second responsibility of the Infiltration Module is to prevent the processing of and interaction
with C&C servers which have been deemed unresponsive or ”dead”. A requirement being that a
strategy is defined to deal with repeated failed interaction attempts or unpredictable or erratic
interactions with the C&C server. The intention is to conserve framework resources from being
wasted on C&C servers which have been disabled or removed and/or those which employ a
command grammar which is inconsistent with the malware family being analysed. Therefore,
it is insufficient to assume a C&C server is ”live” after only a successful network connection is
established. An example ”dead” C&C strategy would be to remove from processing those C&C
severs that have not been detected as ”live” after six consecutive failed attempts occurring at
random times of the day over the course of two consecutive weeks.

36

To perform a successful liveness test of a C&C server the Liveness module requires that sufficient
information be extracted from a bot binary. This information would typically include:

• the IP address or DNS hostname and TCP port of the C&C server,

• the botnet registration information,

• and tests to determine if the C&C server is responding in the correct, predictable manner.

Once an event is received by the Liveness module connection information is gathered from the
framework datastore and a network connection is attempted. Upon successful connection, botnet
registration is gathered from the datastore and a registration attempt is initiated. If this is
successful the C&C server is regarded as ”live” and a message is placed on the C&C Interaction
module message queue.

If a connection or registration attempt results in a failure the failure counter is incremented. An
event is placed on the Liveness Message queue for retesting at a later stage. This process continues
until such time as the failure counter for the C&C server exceed that of the failure threshold,
resulting in the C&C server being marked as ”dead” and no further connections and registrations
attempted. An example implementation is available in the case-study in Section 5.3.1.

Figure 4.8: C&C Liveness module process flow.

4.5.2 C&C Interaction Module

The intention of the C&C Interaction module is to connect to, register with, and ultimately
receive, interpret, respond to, and store the commands issued by the C&C server software. This

37

requires that the module support the botnet communication protocol and a sufficient implemen-
tation of the botnet command grammar.

The high-level phases of a botnet interaction typically consist of the following phases:

• Network connection to C&C server

• Register with C&C server

• Await commands from C&C sever

• Respond to and action commands (deemed ”safe”) from C&C server

The network connection and bot registration phases and source code can be shared between the
C&C Liveness module and the C&C Interaction module. However, the receiving of, respond-
ing to, and actioning of commands are unique to the C&C Interaction module. The level of
interaction between the framework and C&C server would influence the amount of botnet com-
mand grammar requiring implementation by the module. A fully functional module capable
of responding correctly to all of the C&C server commands would therefore require a complete
implementation of the botnet command grammar. Should this not be possible the handling of
unsupported commands by the framework would need to be implemented. In the case of the
BladeRunner framework implemented by Arbor Networks, the contingency is for the framework
to not respond to unknown or un-implemented commands and instead disconnect from the bot-
net and blacklist the C&C server [25] from further interaction. This is but one strategy and
it is up to the implementer to consider their risk appetite for potential detection and reprisal.
Collected commands and the subsequent responses are stored within the framework datastore
for later analysis.

It is strongly suggested that all botnet commands and responses be gathered in their original, raw
format along with their processed format. This is to ensure that any errors in the implementation
of command processing and response code do not result in a loss of data – as the raw data can
be re-processed once errors have been corrected. This module should also support the ability to
download additional malware or updates to the botnet server software through the emulation of
the botnet’s native functions. This would potentially allow for the gathering of never-before-seen
malware, as reported in [25], adding to the value of the framework’s development and implemen-
tation. It is recommended that implementers of C&C Interaction modules not implement those
functions which result in malicious action being performed by the research bot, yet still respond
as if the command was completed as requested. An example of a malicious actions would be
scan-and-infect type actions which could impact on other, non-research computer systems. This
would allow for botnet analysis to be conducted with reduced risk.

Events received by the module result in the initiation of a network connection and botnet reg-
istration. Commands issued by the C&C server are then monitored, responded to, and stored
both within the framework datastore and in their raw format. Any new files downloaded via
download functions are presented to the Sample Collection system for processing. An example
implementation is available in the case-study (in Section 5.3.2) which illustrates the ability to
gather useful data through the implementation of a subset of a botnet’s functionality.

38

Figure 4.9: C&C Interaction module process flow.

4.6 Message Queue

The message queue is used for intra-system event and output communication. Once a preceding
system has completed its processing subsequent systems are informed and their analysis tasks
may then occur. A message queue is preferred over a time- or job-based system for the following
reasons:

• allows for faster analysis work distribution across multiple systems

• real-time analysis of bot binaries as they are introduced to the framework or a preceding
systems completes analysis

• time-savings due to constant analysis activities occurring

• simplified distribution of analysis activities across multiple network-connected computer
systems

• removes the need to engineer and implement system code which makes use of threading or
multi-processing

Figure 4.10 represents a generic framework process flow, along with the associated message
queues, systems, and modules. Each module makes use of a distinct input message queue requir-
ing that the preceding module places events into the relevant queue for consumption.

39

Figure 4.10: Message queue process flow.

4.7 Framework Design Summary

This chapter presented the design considerations incorporated into the design of the proposed
framework, namely:

1. Stealth

2. Scalability

3. Sample collection

4. Botnet grammar

5. Anti-debugging

6. Protocol support

This was followed by an introduction to the proposed framework along with the systems and
modules they comprise.

The Sample Collection System (see Section 4.3) comprised the Sample Acquisition module (see
Section 4.3.1) that acquired bot binaries for analysis, and the Sample Metadata Collection module
(see Section 4.3.2) that gathered metadata information for all acquired bot binaries. The Sample
Acquisition module was capable of employing multiple sources for bot binary collection thereby
incorporating the design consideration ”Sample Collection”.

The Sample Analysis system comprised two modules, namely the Static (see Section 4.4.1) and
Dynamic Analysis (see Section 4.4.2) modules. These modules employed static and dynamic
binary analysis methods to extract the botnet configuration information from a bot binary under

40

analysis. The low resource requirements and support for multiple botnet families allows great
scalability potential for the Static Analysis module and was therefore able to incorporate the
”Scalability” design consideration. The Dynamic Analysis module was able to incorporate the
”Anti-debugging” design consideration through its use of ”VM hiding” and memory analysis
techniques.

The infiltration system is responsible for all interactions with botnet C&C servers and comprises
of two modules, namely the C&C Liveness module (Section 4.5.1) and the C&C Interaction
module (Section 4.5.2). This system had four major design considerations namely ”Stealth”,
”Scalability”, the implementation of sufficient ”Botnet Grammar”, and ”Protocol Support” (Sec-
tion 4.1).

Details of the framework implementation used in the case-study are provided in the next chapter.
This includes the malware source, each system and module’s specific technical implementations
and their compliance with the framework design considerations detailed in Section 4.1, and the
source code and data models employed – where necessary.

41

5
Framework Implementation

In this chapter detailed information on the implementation of the proposed framework is pro-
vided. The implementation was written using the Python scripting language and made use of
the PostgresSQL relational database as the datastore. Both software packages were selected due
to the author’s previous experience and (in the case of Python) its ability to integrate with other
software packages through the use of libraries.

Section 5.1 documents the implementation of the Sample Acquisition (Section 5.1.1) and Sample
Metadata Collection (Section 5.1.2) modules.

Section 5.2 provides details on the implementation of the Static Analysis module (Section 5.2.1).
Unfortunately, due to time constraints it was not possible to implement the Dynamic Analysis
module. Although a design concept was documented it is not included in this work.

Section 5.3 provides details on the implementation of the C&C Liveness (Section 5.3.1) and C&C
Interaction Section 5.3.2 modules.

5.1 Sample Collection System Implementation

VirusTotal is an Internet-based resource which allows Internet users the ability to upload files
they believe to be suspicious. These files are submitted for analysis by an ever increasing num-
ber of anti-virus and anti-malware products1. The intended goal is to determine whether the file
is indeed malicious, and if possible to which malware family the file belongs. The VT system
provides additional information on a submitted file’s behaviour when executed through the incor-
poration of sandbox analysis – utilising the Cuckoo sandbox software. VT receives hundreds of
thousands of malware samples for multiple sources daily2, making it the largest public repository
of malware samples on the Internet today.

1http://www.virustotal.com/
2http://www.virustotal.com/en/statistics/

42

Historically malware authors also made use of the VT system to determine if their malware
binary is able to evade detection by anti-virus solutions however, this practice is now strongly
discouraged. This is due to VT sharing all uploaded samples with participating anti-virus vendors
for their own analysis and anti-virus signature generation. Thus, a previously undetected malware
sample (uploaded to VT) could potentially be detected by a victim’s updated anti-virus solution.
Owing to the often enterprising nature of fraudsters a number of underground VT-like services
have appeared, whereby malware is also scanned by anti-virus solutions but the uploaded files
are not shared with any anti-virus vendors.

The case-study implementation of the Sample Collection system made exclusive use of VT as
a malware source and for the majority of metadata information. There are some drawbacks
when analysing bot binaries from a single source, some of which have already been mentioned
in Section 2.5. However, it is this researcher’s belief that these shortcoming have been overcome
due to the number of samples available and the diverse sample sources providing samples to
VT.

Whilst there are no official statistics available of how many samples are available for download
from the VT malware repository, the statistics web-page3 shows that the number of samples
submitted for analyse weekly is in the millions. This is more samples than could be hoped for
from a network of honeypots deployed by this researcher. Additionally, through the use of this
repository a greater number of malware samples was analysed than any of the research papers
presented in Section 2.4.

The submission of suspicious files is not only possible via the VT website, but also through the
provided public4 and privatehttps://www.virustotal.com/en/documentation/private-api/ APIs.
These APIs have been integrated into malware research software by commercial and research
organisations and individuals. These include publicly accessible file analysis systems such as
Hybrid-Analysis5, Malwr6, Anubis7, ThreatExpert8, and the FOSS Cuckoo Sandbox9. This
provides access to bot binaries which are not solely reliant on a single means of propagation and
creates the potential for a wide-range of sample submission sources. Another advantage is access
to historic bot binaries, allowing for the analysis of trends over time.

However, VT cannot be assumed to contain all malware samples ever released for a number
of reasons. For instance, due to usage or intellectual property restrictions samples may not
be allowed to be disclosed to services like VT. Therefore VT does not contain the complete
DarkComet bot binary dataset, that is all DarkComet bot binaries ever released, and analysis
leveraging its malware repository cannot be regarded as having access to all samples in existence;
it may be safe to assume that no such dataset exists.

3https://www.virustotal.com/en/statistics/
4https://www.virustotal.com/en/documentation/public-api/
5http://www.hybrid-analysis.com/
6http://malwr.com/
7http://anubis.iseclab.org
8http://www.threatexpert.com/
9http://www.cuckoosandbox.org/

43

5.1.1 Sample Acquisition Module Implementation

VT provides both a ”public”10 and ”private”11 API for interacting with their analysis system –
the latter provides additional functionality not available in the former. The framework made use
of this functionality, which enables user-defined searching and downloading of malware samples
utilising a number of search modifiers. A full listing of all possible private API search modifiers
is available here12. This framework implementation gathered all available bot binaries from VT
which were identified by the Microsoft anti-virus software (Windows Defender) for analysis.

The Microsoft software was chosen due to it being the benchmark against which all other anti-
virus software is compared to by AV-Comparatives13 – an independent non-profit organisation
which performs testing of computer security products utilising scientific methods. The organisa-
tion has close ties with the University of Innsbrucks Department of Computer Science14.

Microsoft assigns the name ”Fynloski” to all bot binaries identified as being a member of the
DarkComet family. Variants are differentiated by appending an alphabet character to the end
of the name, for example ”Fynloski.A” or ”Fynloski.B”. As DarkComet was originally written
to execute on computers running the Microsoft Windows operating system on the 32-bit CPU
architecture, and consequentially allows execution on 64-bit architectures and operating systems,
the name is prepended with the identifier of ”Win32”. For example, a bot binary belonging to the
first variant of the ”Fynloski” malware family would be identified as ”Win32/Fynloski.A”.

An extract of the Python code responsible for determining DarkComet bot binaries for download
from VT, utilising the file search API function, is provided in Listing 5.1. VT distinguishes
between distinct malware samples through the use of SHA256 hash values of its file contents
and subsequently stores only those which attract unique values. However, VT does record meta
information for duplicate malware sample submissions including the number of times submitted
and the distinct number of sources uploading the sample. Please see Section 5.1.2 for details on
how this information was utilised for data analysis. This SHA256 hash value was used as the
”sample identifier” throughout the framework.

The VT ”file-search” API function paginates the returned data presenting only the 300 most
recent sample identifiers, based on submission date, per search query. The API does provide
an ”offset” Listing 5.1 (lines 6-19) key-value pair to allow for the returning of additional sample
identifiers. Therefore, by performing an identical file-search API request and including this
”offset” parameter and value in the request the next recent 300 sample identifiers are returned.
The API output will continue supplying an offset key-value pair until the last page of results has
been returned, indicating that all search results have been returned.

10http://www.virustotal.com/en/documentation/public-api/
11http://www.virustotal.com/en/documentation/private-api/
12http://www.virustotal.com/intelligence/help/file-search/#search-modifiers
13http://www.av-comparatives.org/
14http://informatik.uibk.ac.at/en/

44

Listing 5.1: VirusTotal API search output.

1 {u’response_code’: 1, u’verbose_msg’: u’Found samples matching the required

2 properties’, u’hashes’: [u’35622e1a01c9a46858cb035c413479177b5896da99ee52a

3 437c6634f49c8be33’, u’7ee24754f3a99dc3b1c3606e5cce101774eadb11d50e02ab7b7ee

4 53a8d4804d3’, u’c5e4a55ef299d6f0fc4373f122c193b39bed0094e7ad89cece7b8338d59

5 cd48a’, u’51d7ac29a441c80d60da8b7b51f943a14f985adf1cf21069b9d0beaba4ba74b7’,

6 u’offset’: u’RmFsc2U6Q3A0RUNvZ0NDdW9CX3dEQVFkVWVOU0RBQVA4QV9fXy05dzYxQlJfa0Z

7 TTnBqSUdKbG8yS2pJdVFpNTZUbkpPUWlwdl9BSFJ0b0tDWmk0eWdvUDhBWFo2UGo1cVJtSmFSbXY

8 4QWMzUnRscEdibW9mX0FGMk1ucEtQazVxTV93QnpkRzJia0p5Z2xwdl9BRjNJenB1ZHpNckttWm5

9 JeU1xZG1zN0l6c3ZJeDhmUHpKM0t6c2FjeHMzTno1M01tc21kbkp6Tng1ekhuSnFienB2Snlaekt

10 5c19IeXBuSm1wdkh5SjZhX3dCemY4ak9tNTNNeXNxWm1jakl5cDJhenNqT3k4akh4OF9NbmNyT3h

11 wekd6YzNQbmN5YXlaMmNuTTNIbk1lY21wdk9tOG5Kbk1yS3o4ZkttY21hbThmSW5wcl9BUF8tRUt

12 3Q0lRVGRCSkFkUEJzWlVBQmFDd21Sc1pYblZrbml1aEFCRWcxRWIyTjFiV1Z1ZEVsdVpHVjRHcTR

13 CS0VGT1JDQW9TVk1nSW1OMWMzUnZiV1Z5WDI1aGJXVWlJQ0poY0hCbGJtZHBibVVpS1NBb1NWTWd

14 JbWR5YjNWd1gyNWhiV1VpSUNKemZuWnBjblZ6ZEc5MFlXeGpiRzkxWkNJcElDaEpVeUFpYm1GdFp

15 YTndZV05sSWlBaUlpa2dLRWxUSUNKcGJtUmxlRjl1WVcxbElpQWljMkZ0Y0d4bGN5SXBJQ2hSVkZ

16 BZ0lrSmhZMnRrYjI5eUlGZHBiak15SUVaNWJteHZjMnRwSWlBaWNuUmxlSFJmYldsamNtOXpiMlo

17 wSWlrcE9oZ0tDeWhPSUhOdVluSmZiSE1wRUFFWkFBQUFBQUFBQUFCS0hBZ0FPaFZ6ZERwaWRHbGZ

18 aMlZ1WlhKcFkxOXpZMjl5WlhKQXJBSlNHUW9NS0U0Z2IzSmtaWEpmYVdRcEVBRVpBQUFBQUFBQTh

19 QOA==’}

The code responsible for querying the VT private API’s file-search functionality utilises the
Python ”requests” library15. A snippet of the code which performs the sample search (line 11)
is shown in Listing 5.2.

Listing 5.2: Python code used to search for Win32/Fynloski bot binaries.

1 def perform_vt_search():

2 # constants

3 api_key = ’API KEY’

4 search_term = ’microsoft:"Backdoor:Win32/Fynloski."’

5 virustotal_api_url = ’https://www.virustotal.com/vtapi/v2/file/search’

6
7 # set parameters for the search API call

8 params = {’apikey’: api_key, ’query’: search_term}

9
10 # perform the search

11 response = requests.get(virustotal_api_url, params=params, timeout=120)

By utilising Python sets16 it is possible to download unique, unseen samples thereby conserving
both storage and processing resources. This is accomplished through querying the framework’s
datastore for all sample identifiers and the result being converted to a Python set. The results
from the VT search are also converted. Python sets possess the ability to ”subtract” a set from
another, which presents a new set whose elements are distinct between the two sets. Through
utilising this attribute only those sample identifiers which have not been downloaded are returned
and provided to the Sample Acquisition module for the downloading of bot binaries. A snippet
of the code responsible for the downloading of bot binaries is provided in Listing 5.3. The
”file-download” API function requires that a sample identifier be supplied as the value of the

15http://docs.python-requests.org/en/latest/
16http://docs.python.org/2/library/sets.html

45

”hash” parameter in the download request (line 11). The implementation confirms a successful
download through computing the SHA256 hash of the downloaded file’s contents and comparing
it with the VT sample identifier. Due to both systems generating sample identifiers in the same
way, if the sample identifiers match the download is deemed successful. If not, the download
is re-attempted three times after which the module aborts the downloading of that specific bot
binary and continues to the next. Upon completion of a bot binary download, a record is
created in the ”samples” table in the framework database. The ”SHA256” column is populated
with the ”sample identifier” and the ”source” column with the malware sample source, in this
instance ”vt” for VT. Table 5.1 provides an overview of the data stored within the ”samples”
table. A Unified Modelling Language (UML) representation of the ”samples” table is provided
in Section 5.4.

Once the Sample Acquisition module has successfully downloaded a bot binary, and entered the
relevant information into the framework datastore, it places messages into the Sample Metadata
Collection module and Sample Analysis System message queues for further processing. These
messages simply contain the sample identifier. Analysis conducted on the information generated
by this modules implementation is available in Section 6.1. Using VT as the bot binary source
allowed for the acquisition of 83,175 unique bot binaries for analysis. As previously discussed
in Section 5.1 VT accepts submissions from a number of entities, including Internet users and
automated systems such as honeypots and sandboxes. Through the use of VT as the bot binary
source this implementation satisfied the design consideration of ”Sample Collection”.

46

Table 5.1: Data stored within the samples table.

Column Name Description Data Type Example Data

sha256 SHA256 hash of the bot bi-
nary contents.

varchar 000069434bc591aff70680c6e4c
81280acc089b5fa0bcca324910
1e39be7a69a

source The bot binary source. varchar vt

Listing 5.3: Python code used to download bot binaries referenced by their sample identifier.

1 def get_vt_file(file_hash, attempt=0):

2 # constants

3 attempt_limit = 3

4 api_key = "API KEY"

5 vt_api_url_download = ’https://www.virustotal.com/vtapi/v2/file/download’

6
7 # we attempt each sample download 3 times before we give up

8 if attempt < attempt_limit:

9
10 ## download the sample from VirusTotal using files SHA256 hash

11 params = {’apikey’: api_key, ’hash’: file_hash}

12
13 response = requests.get(vt_api_url_download, params=params, timeout=5)

14
15 # save download to the disk with a file name of the SHA256 hash with an

extension of ".bad"

16 with open("%s%s.bad" % (bad_dir, file_hash), "wb") as vt_file_download:

17 vt_file_download.write(response.content)

18
19 # perform download check through comparing the on-disk SHA256 hash with the

VirusTotal SHA256 hash.

20 # If the values match, the file was successfully downloaded

21 local_hash = hashlib.sha256(open("%s%s.bad" % (bad_dir, file_hash),

’rb’).read()).hexdigest()

22 if local_hash == file_hash:

23 return True

24
25 # if the download failed, increment attempt and retry download

26 else: get_vt_file(file_hash, attempt+1)

5.1.2 Sample Metadata Collection Module Implementation

The Metadata Collection module is responsible for the downloading, processing and storing of
the metadata information for each bot binary downloaded by the Sample Acquisition module
(Section 4.3.1). The majority of the metadata information was collected from VT through the
use of the ”file-report” private API function. The CTPH data was gathered separately through
functionality implemented by this author. Table 5.2 provides an overview of the metadata
collected by this module. A snippet of the Python code used to download and process the VT
metadata information, generate the CTPH for each bot binary, and save the information to the
framework’s datastore is available in Listing 5.4.

47

The function ”download scan report” (lines 1-5) downloaded the analysis report from VT con-
taining the metadata information. To request an analysis report from VT, the ”file-report” API
function required that the ”resource” parameter be assigned the value of the sample identifier
(line 4). VT provided the analysis report formatted as a JavaScript Object Notation (JSON)
object17. The function ”process scan report” (lines 7-50) was responsible for extracting the rel-
evant information from the VT analysis report. This function also generated the CTPH of the
bot binary (line 43) and inserted all the extracted information into the framework’s PostgreSQL
relational database (not shown). Data collected by the Sample Metadata Collection module was
stored in the ”metadata” table of the framework datastore, with a column for each piece of meta-
data collected. Table 5.2 provides an overview of the information stored within the ”metadata”
table. A UML representation of the ”metadata” table is provided in Section 5.4.

This module does not generate any message queue messages. Analysis conducted on the infor-
mation generated by this module’s implementation is available in Section 6.2.

17http://www.json.org/

48

Listing 5.4: Python code used to download and process metadata information, and generate the
CTPH for each bot binary.

1 def download_scan_report(file_hash):

2 # Using the SHA256 file hash, download the sample metadata

3 params = {’apikey’: ’API KEY’, ’resource’: file_hash, ’allinfo’: ’1’}

4 response = requests.get(’https://www.virustotal.com/vtapi/v2/file/report’,

params=params)

5
6 def process_scan_report(report_response_json):

7 # Convert response to JSON object and extract data

8 file_hash = report_response_json[’sha256’] # the sample identifier

9 submission_names = report_response_json[’submission_names’] # original file names

10
11 # extract the malware family as identified by Windows Defender

12 if ’Microsoft’ in report_response_json[’scans’].keys():

13 malware_family = report_response_json[’scans’][’Microsoft’][’result’]

14
15 file_type = report_response_json[’type’] # the file type of the sample

16 file_size = report_response_json[’size’] # the size of the sample

17
18 # convert the first_seen date to a postgres compatible date object

19 first_seen = int(time.mktime(time.strptime(report_response_json[’first_seen’],

’%Y-%m-%d %H:%M:%S’)))

20
21 # convert the last_seen date to a postgres compatible data object

22 last_seen = int(time.mktime(time.strptime(report_response_json[’last_seen’],

’%Y-%m-%d %H:%M:%S’)))

23
24 # a count of the number of times a sample was submitted

25 times_submitted = report_response_json[’times_submitted’]

26
27 # the compilation timestamp as extracted from the sample

28 pe_timestamp = report_response_json[’additional_info’][’pe-timestamp’]

29
30 # a count of sources which submitted the sample

31 unique_sources = report_response_json[’unique_sources’]

32
33 # a count of the scanners identifying the sample as malicious

34 positives = report_response_json[’positives’]

35
36 # the packer used

37 peid = report_response_json[’additional_info’][’peid’]

38
39 # the URL of the VirusTotal report

40 permalink = report_response_json[’permalink’]

41
42 # generate ctph of sample

43 ssdeep_hash = s.hash_file(filename)

49

T
ab

le
5.

2:
D

at
a

st
or

ed
w

it
h

in
th

e
m

et
a
d
a
ta

ta
b

le
.

C
o
lu

m
n

N
a
m

e
D

e
sc

ri
p

ti
o
n

T
y
p

e
E

x
a
m

p
le

D
a
ta

su
b

m
is

si
on

n
a
m

es
O

ri
g
in

al
fi

le
n

a
m

e(
s)

w
h

en
su

b
m

it
te

d
fo

r
an

al
y
si

s
(V

ir
u

sT
ot

al
).

te
x
t

”M
S

R
S

A
A

P
.E

X
E

,y
ah

o
o-

h
ac

k
2.

ex
e”

m
al

w
a
re

fa
m

il
y

M
al

w
a
re

fa
m

il
y

an
d

va
ri

an
t

as
id

en
ti

fi
ed

b
y

W
in

d
ow

D
ef

en
d

er
(V

ir
u

sT
ot

al
).

va
rc

h
ar

B
ac

k
d

o
or

:W
in

32
/F

y
n

lo
sk

i.
A

fi
le

ty
p

e
B

ot
b

in
ar

y
fi

le
fo

rm
at

(V
ir

u
sT

ot
al

).
va

rc
h

ar
W

in
32

E
X

E

fi
le

si
ze

S
iz

e
(i

n
b
y
te

s)
of

th
e

b
ot

b
in

ar
y

(V
ir

u
sT

ot
al

).
in

te
ge

r
12

42
62

4

fi
rs

t
se

en
S

u
b

m
is

si
o
n

ti
m

es
ta

m
p

fo
r

th
e

b
ot

b
in

ar
y

(V
ir

u
sT

o
ta

l)
.

in
t

13
40

59
68

59
(e

p
o
ch

ti
m

e)

la
st

se
en

T
im

es
ta

m
p

o
f

w
h

en
th

e
b

ot
b

in
ar

y
w

as
la

st
u

p
lo

ad
ed

(V
ir

u
sT

ot
al

).
in

t
14

01
92

79
37

(e
p

o
ch

ti
m

e)

ti
m

es
su

b
m

it
te

d
C

ou
n
t

of
th

e
ti

m
es

th
e

fi
le

w
as

su
b

m
it

te
d

(V
ir

u
sT

o
ta

l)
.

in
t

5

p
e

ti
m

es
ta

m
p

C
om

p
il

a
ti

o
n

ti
m

es
ta

m
p

ex
tr

ac
te

d
fr

om
th

e
b

o
t

b
in

ar
y

(V
ir

u
sT

o
ta

l)
.

in
t

13
39

08
47

93
(e

p
o
ch

ti
m

e)

u
n

iq
u

e
so

u
rc

es
C

ou
n
t

of
th

e
u

n
iq

u
e

so
u

rc
es

(b
as

ed
on

IP
ad

-
d

re
ss

)
fo

r
a

b
ot

b
in

ar
y

(V
ir

u
sT

ot
al

).
in

t
5

p
os

it
iv

es
C

ou
n
t

o
f

th
e

an
ti

-v
ir

u
s

so
ft

w
ar

e
w

h
ic

h
id

en
-

ti
fi

ed
th

e
b

ot
b

in
ar

y
as

b
ei

n
g

m
al

ic
io

u
s.

T
h

is
n
u

m
b

er
is

d
ep

en
d

an
t

on
th

e
n
u

m
b

er
of

an
ti

-
v
ir

u
s

sc
an

n
er

s
em

p
lo

ye
d

(V
ir

u
sT

ot
al

).

in
t

45

sc
a
n

n
er

s
C

ou
n
t

of
th

e
sc

an
n

er
s

u
ti

li
se

d
d

u
ri

n
g

an
al

y
si

s
(V

ir
u

sT
o
ta

l)
.

in
t

51

p
a
ck

er
s

O
b

fu
sc

at
io

n
so

ft
w

ar
e

id
en

ti
fi

ed
(V

ir
u

sT
ot

al
).

va
rc

h
ar

A
S

P
ac

k
v
2.

12

p
er

m
a
li

n
k

U
R

L
to

th
e

V
ir

u
sT

ot
al

an
al

y
si

s.
va

rc
h

ar
h

tt
p

s:
/
/
w

w
w

.v
ir

u
st

o
ta

l.
co

m
/
fi

le
/
d

9
2
a
0
1
2
b

d
f9

9
4
0
9
a
6
d

b
9
a
6
7
2
cb

b
cb

d
6
c6

6
9
7
5
1
6
ef

d
5
5
a
5
a
6

3e
27

84
67

8e
24

3a
fd

/a
n

al
y
si

s/
14

01
93

51
37

/

ss
d

ee
p

T
h

e
C

T
P

H
of

th
e

b
ot

b
in

ar
y.

va
rc

h
ar

24
57

6:
G

Z
1x

u
V

V
jf

F
o
y
n

P
aV

B
U

R
8f

+
k
N

10
E

B
S

u
y
g
9
T

R
h

k
p

K
rc

E
+

F
y
:W

Q
D

g
o
k
3
0
cy

g
9
T

R
K

D
E

+
g

50

5.2 Sample Analysis System Implementation

As discussed earlier (see Section 4.4) this system could comprise of two modules, namely the
Static and Dynamic Analysis modules. The case-study implemented only the Static Analysis
module due to time constraints. Even though the Dynamic Analysis module was not imple-
mented, the amount of information extracted using this single method of analysis provided
excellent results. The following sections provide details on the case-study implementation of the
Sample Analysis system along with analysis of the output from the Static Analysis module.

5.2.1 Static Analysis Module Implementation

Due to the predictable layout of DarkComet bot binaries it was possible to extract the Dark-
Comet configuration information using static analysis scripts. This greatly reduced the effort of
performing manual static analysis on all the collected samples. AlienVault Labs18, an informa-
tion security company, released a DarkComet configuration extraction script [5] that takes as
input the path to a DarkComet version 3 to 5 bot binary and, if the binary was in its default
layout, prints to screen the bot configuration information. By making use of a modified Dark-
Comet configuration extraction script, the implementation was able to extract the configuration
data from 40,632 DarkComet bot binaries out of the total 83,175 collected; which equates to
48.85%. This percentage of successfully analysed bot binaries provided us a wealth of knowledge
not previously available.

As illustrated in Figure 3.6, due to a change in the format of the configuration data saved in a
DarkComet v5.1+ server binary the AlienVault script was not capable of supporting the format
differences. The script was extended by this researcher to support all versions of DarkComet
from version 3 to 5.1+. This increased the number of bot binaries analysed and therefore
provided a larger amount of data for analysis. As mentioned previously (see Section 3.3.1) the
DarkComet configuration information is encrypted using a RC4-256 encryption key before being
embedded into the bot binary. This is intentionally used to slow analysis of the bot binary and
prevent simple strings analysis from exposing sensitive configuration information. Due to the
necessity for the encryption key to be stored within the binary – the bot software requires it
for decryption of the configuration information – the DarkComet author employed a number of
different obfuscation techniques to further make the process of extracting this encryption key
slow and cumbersome [24]. The DarkComet author went to lengths to obfuscate the encryption
key, possibly due to it being static, not changeable, and DarkComet version specific. However,
once the encryption key is known for a version of DarkComet all default bot binaries of that
version can have their configuration decrypted using the known key. Through the analysis of
bot binaries [2, 24] these static keys were extracted and published and have become well known
within the malware research community. This knowledge provided the ability to decrypt the
extracted configuration information from bot binaries without exhaustive manual static analysis.
By obtaining a DarkComet bot binary, and if no obfuscation methods have been employed
to change the layout of the binary, it was possible to extract the DarkComet configuration
information from the bot binary. Table 5.3 lists the keys used to encrypt the configuration
information for each version of DarkComet.Listing 5.5 is an example of a decrypted, redacted
DarkComet V5.1+ configuration extracted from a bot binary.

18https://www.alienvault.com/who-we-are/alienvault-labs

51

Table 5.3: DarkComet static configuration encryption keys per version.

DarkComet Version Static RC4 Encryption Key

5.1+ #KCMDDC51#-890

5.0 #KCMDDC5#-890

4.2F #KCMDDC42F#-890

4.2 #KCMDDC42#-890

4.1 #KCMDDC4#-890

3 #KCMDDC2#-890

Listing 5.5: An example, decrypted, redacted DarkComet V5.1+ configuration.

#BEGIN DARKCOMET DATA --

MUTEX={DC_MUTEX-1XNQ69V}

SID={Group 16}

FWB={0}

NETDATA={darkcomet.example.com:1604|127.0.0.1:1605}

GENCODE={0LGYVhtuCi4W}

INSTALL={1}

COMBOPATH={2}

EDTPATH={MSDCSC\\msdcsc.exe}

KEYNAME={MicroUpdate}

EDTDATE={16/04/2007}

PERSINST={1}

MELT={1}

CHANGEDATE={1}

DIRATTRIB={6}

FILEATTRIB={6}

SH1={1}

CHIDEF={1}

CHIDED={1}

PERS={1}

OFFLINEK={1}

#EOF DARKCOMET DATA --

The implementation of the Static Analysis module worked in the following way; the ”darkcomet -
version” function fulfilled two requirements, to determine if the bot binary is in a suitable format
for analysis and if the bot binary is a DarkComet version prior or post 5.1. It accomplished this
through examining the ”RC-DATA” directory of the bot binary for the presence of either the
”NETDATA” or ”DCDATA” entries. If you recall from Section 3.4 DarkComet version 3 to 5
binaries contained separate entries for each configuration key-value pair and versions 5.1 and
later made use of a single ”DCDATA” entry within which all configuration was stored. Once the
DarkComet version was determined the ”darkcomet version” function extracted the pertinent
entries in raw form from the bot binary and presented these to their relevant data extraction
functions. The Python code developed for this function is presented in Listing 5.6.

52

Listing 5.6: darkcomet version

1 def darkcomet_version(self, pe):

2 # this dictionary will be used to store the DarkComet version, raw and

3 # extracted configuration

4 data_dict = {}

5
6 # search for the "DCDATA" directory within the PE object

7 rt_string_idx = [entry.id for entry in

pe.DIRECTORY_ENTRY_RESOURCE.entries].index(pefile.RESOURCE_TYPE[’RT_RCDATA’])

8 rt_string_directory = pe.DIRECTORY_ENTRY_RESOURCE.entries[rt_string_idx]

9
10 # for each entry in the directory calculate the entries offset, and size

11 # before inserting the data into the data_dict dictionary

12 for entry in rt_string_directory.directory.entries:

13 data_rva = entry.directory.entries[0].data.struct.OffsetToData

14 size = entry.directory.entries[0].data.struct.Size

15 data = pe.get_memory_mapped_image()[data_rva:data_rva+size]

16 data_dict[str(entry.name)] = data

17
18 # if the data_dict contains a key of DCDATA label it as v51

19 if "DCDATA" in data_dict.keys():

20 self.dc_object[’VERSION’] = ’v51’

21 self.dc_object[’RAW’] = data_dict

22 return data_dict

23
24 # if the data_dict contains a key of NETDATA label it as v51

25 elif "NETDATA" in data_dict.keys():

26 self.dc_object[’VERSION’] = ’v3’

27 self.dc_object[’RAW’] = data_dict

28 return data_dict

The ”v51” function extracted configuration information from all bot binaries which contained
their configuration information in the ”DCDATA” entry. The information contained within
this entry was decrypted using the static key of ”#KCMDDC51#-890” (see Table 5.3) and the
configuration key-values pairs extracted. The ”v3” function iterateed over the list of entries
provided by the ”darkcomet version” function, decrypting the information using the encryption
keys for DarkComet versions 3 to 5.0, and storing each value. To determine if the decryption of
the configuration was successful (the success criteria) the ”v3” and ”v51” functions performed
a test on the value of the ”NETDATA” configuration key-value pair. This key-value pair is a
required configuration setting for all DarkComet bot binaries and therefore suitable for success
criteria testing. If the value conformed to a simple IP address regular expression the data was
considered correctly decrypted and the function returned the completed decrypted configuration.
Failing this test, the function returned a false result and no further processing occurred. At this
point the Dynamic Analysis module could be employed for additional processing. A diagram
illustrating this process is available in Figure 5.1.

The implementation of the Static Analysis module catered for two additional file types besides
the default of PE, namely the ZIP and RAR file types. This allowed for the analysis of a larger
number of bot binaries due to bot binaries commonly being distributed in this format. A function
was implemented to determine the file type of the malware sample undergoing analysis such that

53

Figure 5.1: DarkComet configuration extraction process.

these archive files could be decompressed before further processing would occur. The python-
magic library19 was used which provides a Python binding to the libmagic library – a library
used to determine the file type of an input file. If it was determined that the malware sample
file type was either a ZIP or RAR archive, it would be presented to the respective processing
function for decompression and all PE files extracted. These PE files would then follow the same
process as for PE bot binaries (described above).

Unfortunately, not all DarkComet bot binaries are released with a predictable PE layout due
to botmasters utilising obfuscation techniques. Manual static analysis of the bot binary could
provide the necessary configuration information at a significant cost and it would need to be
conducted on each individual bot binary. Due to the number of bot binaries being analysed
during this research this option would not have been possible.

This module required satisfaction of the ”Scalability” design consideration. This was accom-
plished through the framework being event-driven and allowing system resources to be assigned
and consumed by only those systems performing work. Also, the ability for multiple Static Anal-
ysis modules to be executed simultaneously, potentially spanning multiple analysis computers,
allowed the framework to scale beyond a single analysis computer. To illustrate this point, con-
sider the following; due to a coding error in the Static Analysis module all bot binaries were
required re-analysis. Employing a single Static Analysis module instance to analyse all 83,175
case-study bot binaries would have required approximately one day of analysis time. However,
by employing eight instances of the module spanning two analysis computers it was possible to
complete this re-analysis in less than three hours. In addition, using only the Dynamic Analysis
module would have taken approximately 27 days (80000/4 ∗ 120/86400)(bot binaries / number
of dynamic analysis workers * average bot binary analysis time / number of seconds in a day)
on a single analysis computer and approximately 14 days on two – assuming a default analysis
timeout of 2 minutes.

The process flow for this module is depicted in Figure 5.2. The contents of the message-queue
message received from the Sample Acquisition module contained the sample identifier of newly
acquired DarkComet bot binaries. Due to the filename of downloaded bot binaries matching
that of their respective sample identifier the module would submit the filename for analysis by
the module’s DarkComet configuration extraction functions. Successfully extracted configuration

19http://github.com/ahupp/python-magic

54

Figure 5.2: Case-study Static Analysis module process flow.

Table 5.4: Data stored within the cnc table.

Column Name Description Type Example Data

hostname C&C server DNS hostname or IP address, de-
pendant on bot binary configuration.

varchar zoaoyno-ip.biz

port TCP port used for communication between
the C&C server and victim computer.

int 1604

encryption key Communication encryption key used for com-
munication between the C&C and victim.

varchar #KCMDDC51#-890

rat type Malware family or type. During the case-
study only DarkComet bot binaries were
analysed therefore this value defaulted to
”dc”.

varchar dc-v51

information was then stored within the framework’s datastore in either the ”cnc” or ”cnc config”
tables. Please see Table 5.4 and Appendix B for an overview of the information stored within
these tables.

Each combination of C&C DNS hostname or IP address, TCP port and encryption key is assigned
a unique identifier of ”id cnc” for cross-referencing. The extracted bot configuration information
was stored within the ”cnc config” table. There were 43 possible configuration keys available,
which are listed in Appendix B. A UML representation of the ”cnc” and ”cnc config” tables
is provided in Section 5.4. Analysis conducted on the information generated by this modules
implementation is available in Section 6.3.

55

5.3 Infiltration System Implementation

In this section the implementation of the Infiltration System is provided. This system com-
prised two modules namely the C&C Liveness (see Section 5.3.1) and C&C Interaction (see
Section 5.3.2) modules.

Both modules required compliance with the ”Stealth”, ”Botnet Grammar”, and ”Protocol Sup-
port” design considerations. To ensure that the source IP address of the framework was hidden
from C&C servers the implementation leveraged the TOR network for all communications be-
tween the framework and C&C servers. In this way, if the framework was banned the framework
could request a new source IP address from the TOR network and re-connect to the C&C server.
In addition, both modules supported the custom DarkComet communication protocol thereby
allowing the framework to communicate with the C&C servers and receive and respond to com-
mands. Each module required different levels of botnet grammar support, which is detailed in
the respective section below.

5.3.1 C&C Liveness Module Implementation

As discussed in Section 4.5.1 the intention of this module was to determine if a C&C server was
responding to communications as sent by an infected computer. To achieve this the C&C Liveness
module required implementation of the communication protocol as well as sufficient DarkComet
command grammar to confirm a working C&C server. The initial DarkComet handshake between
a victim computer and a C&C server was presented in Listing 3.1 and consists of the following
stages:

1. Initial connection by the bot to C&C server (line 2)

2. C&C sends a message containing the ”IDTYPE” verb (line 4)

3. Bot responds with ”SERVER” identifying itself as a bot (line 6)

4. C&C responds with the ”GetSIN” verb along with its Internet-routable IP address and 6
random digits (line 8)

5. Bot responds with information including its IP addresses (public and private), the username
of the currently active user, operating system, locale, etc. (line 10). Listing 3.2 provides a
breakdown of this information.

6. Keepalive messages are then periodically sent to the C&C confirming the bots online status
(lines 12 and 14).

As all communications make use of a custom protocol and the messages are encrypted, bar
the ”keepalive” messages, it would be safe to assume that any host correctly responding would
be a C&C server. Due to this, the Liveness module implementation would mark a computer
as being a DarkComet C&C and ”live” if it responded to the initial, successful connection by
sending an encrypted ”IDTYPE” message which was able to be decrypted using the bot binary
extracted communication encryption key. Thus complying with the first two items in the list
above. This module required the implementation of the precise C&C server commands and the
corresponding responses during bot registration, thereby satisfying the design consideration for
”Botnet Grammar”.

56

Table 5.5: Data stored within the cnc ip table.

Column Name Description Type Example Data

ip address Internet-routable IP address
of the C&C server.

inet 41.58.24.95

first seen The timestamp of when the
C&C was first confirmed as
”live”.

int 1400898336 (epoch)

last seen The timestamp of when the
C&C was last confirmed
”live”.

int 1402031591 (epoch)

geo country C&C geo-location based on its
public IP address.

char(2) IN

geo org Organisation (for example In-
ternet Service Provider (ISP))
which is the registered owner
of the C&C server public IP
address.

varchar BSES TeleCom Limited

geo asn Autonomous System Number
(ASN) of the C&C server’s
public IP address.

int 17803

Table 5.6: Data stored within the cnc connections table.

Column Name Description Data Type Example Data

failures Number of consecutive live-
ness failures.

int 0

first seen The timestamp of when the
C&C was first seen as ”live”.

int 1399756792 (epoch)

last seen The timestamp of when the
C&C was last confirmed
”live”.

int 1400400883 (epoch)

Data generated by this module was stored within the ”cnc ip” (Table 5.5) and ”cnc connections”
(Table 5.6) tables. The tables were used to monitor for changes to the IP address of C&C servers
and store the success or failure of connections with the C&C servers. After 84 consecutive
connection failures, with six attempted connections per day over 14 days, the C&C server was
marked as ”dead” and no further connections were attempted. A UML representation of the
”cnc ip” and ”cnc connections” tables is provided in Section 5.4.

The C&C Liveness module receives messages from the Sample Analysis module, upon successful
extraction of the DarkComet configuration from a bot binary, containing the C&C identifier.
The module would then query the framework datastore for the C&C connection information (IP
address or hostname, TCP port, and communication key), which would be used to complete a
liveness test of the C&C server. A test would prompt the module to generate a message for
consumption by the C&C Interaction module as well as record details of the success (timestamp,
public IP address, geographic location, organisation and ASN) in the framework datastore. Un-
successful liveness tests would not prompt a message to be sent and the failure would be recorded.
Were communication with a C&C server over a period of two weeks not possible, the C&C would

57

be marked as ”dead” and no further liveness tests would be conducted. Analysis conducted on
the information generated by this modules implementation is available in Section 6.4.

5.3.2 C&C Interaction Module Implementation

In their report Denbow and Hertz [20] presented a vulnerability in DarkComet C&C servers
versions 5 and later, which would allow for the downloading of the comet.db file – a SQLite
database containing all the information collected from victim computers by the C&C server.
They named the vulnerability QUICKUP based on the command issued by the C&C allowing
for the ad-hoc uploading of files from a C&C to an infected computer. The vulnerability exists
due to the C&C server not confirming that it initiated the upload request and that the victim
is able to specify the absolute path to the file being ”uploaded”. Due to this, the QUICKUP
exploit allows for a victim computer to download arbitrary files from a vulnerable C&C server.
An example of the conversation between a C&C server and a bot during the use of the QUICKUP
function is presented in Listing 5.7.

Listing 5.7: Decrypted example of a QUICKUP conversation between a C&C and bot.

C&C -> Victim (Encrypted):

QUICKUPcomet.db|111|UPANDEXEC

Victim -> C&C (Unencrypted):

<nothing>

C&C -> Victim (Encrypted):

IDTYPE

Victim -> C&C (Encrypted):

QUICKUP111|comet.db|UPLOADEXEC

C&C -> Victim (Unencrypted):

AC

C&C -> Victim (Unencrypted):

LENGTH_OF_FILE_IN_BYTES

Victim -> C&C (Unencrypted):

A

C&C -> Victim (Unencrypted):

RAW_DATA_OF_COMET.DB

The QUICKUP conversation occurs over a new connection, that is a connection separate to the
usual command connection, which is initiated by the victim computer following the QUICKUP
command being received. Denbow and Hertz stated that a complete initial handshake with the
C&C server would need to occur before exploiting the vulnerability. Additionally, using the
exploit code presented in their report would allow only the first 1024 bytes of the requested file
to be downloaded. This resulted in files larger than 1024 bytes being incomplete and possibly
corrupted. The full conversation required by Denbow and Hertz is presented in Listing 5.8 and
shows the DarkComet initial handshake (lines 1-10) followed by the QUICKUP command (line
12) and the creation of an additional connection between the victim and C&C (line 13 onwards).
It is over this additional connection that the remainder of the QUICKUP conversation takes
place.

58

Listing 5.8: The QUICKUP grammar according to Denbow and Hertz.

1 Victim -> C&C (Unencrypted):

2 <nothing>

3 C&C -> Victim (Encrypted):

4 IDTYPE

5 Victim -> C&C (Encrypted):

6 SERVER

7 C&C -> Victim (Encrypted):

8 GetSIN192.168.1.1|123456

9 Victim -> C&C (Encrypted):

10 infoesGuest16|192.168.1.1 / [172.16.1.1] : 1604|DC-VICTIM / robert|1409656|92s|Windows

XP Service Pack 2 [2600] 32 bit (C:\)|x||ZA|Untitled -

Notepad|{0407a040-5412-11e3-b7a2-806d6172696f-4100499924}|18%|English (South

Africa) ZA / -- |2014/01/13 at 11:58:56 PM|5.3.0

11 ## NEW CONNECTION ##

12 C&C -> Victim (Encrypted):

13 IDTYPE

14 Victim -> C&C (Encrypted):

15 QUICKUP111|comet.db|UPLOADEXEC

16 C&C -> Victim (Unencrypted):

17 AC

18 C&C -> Victim (Unencrypted):

19 LENGTH_OF_FILE_IN_BYTES

20 Victim -> C&C (Unencrypted):

21 A

22 C&C -> Victim (Unencrypted):

23 RAW_DATA_OF_COMET.DB

Through research into the DarkComet communication protocol as a precursor to developing a
research bot, this researcher was able to refine the exploit to require less interaction with the
C&C server. Whilst analysing DarkComet command grammar it was discovered that only the
additional connection was required to exploit the QUICKUP vulnerability without the need for
the initial DarkComet handshake ever having taken place (Listing 5.9 lines 1 to 8). It was
only during the initial DarkComet handshake that a bot is registered with the C&C server and
a log entry created. Forgoing this initial connection resulted in the C&C not creating a log
entry. This resulted in not only a saving on time and bandwidth, but also the research bot
would not appear in the DarkComet log file. It was also discovered that after every chunk, with
a chunk being between 1024 and 4096 bytes in size, of QUICKUP file transfer a DarkComet
C&C server expected an acknowledgement to be communicated by the infected computer. If
no acknowledgement was offered the C&C would halt the file transfer. Through providing the
required acknowledgements (see Listing 5.9 line 21) support for the downloading of any size file
was possible – of which the largest was 500 megabytes. The full conversation required by the
refined QUICKUP exploit is presented in Listing 5.9.

59

Listing 5.9: The QUICKUP grammar according to this research.

1 Victim -> C&C (Unencrypted):

2 <nothing>

3 C&C -> Victim (Encrypted):

4 IDTYPE

5 Victim -> C&C (Encrypted):

6 QUICKUP111|comet.db|UPLOADEXEC

7 C&C -> Victim (Unencrypted):

8 AC

9 C&C -> Victim (Unencrypted):

10 LENGTH_OF_FILE_IN_BYTES

11 Victim -> C&C (Unencrypted):

12 A

13 C&C -> Victim (Unencrypted):

14 1024_BYTES_OF_COMET.DB

15 Victim -> C&C (Unencrypted):

16 A

The code used to exploit the QUICKUP vulnerability is presented in Listing 5.10. Line 3
shows that a connection was made to a ”live” DarkComet C&C server. The connection re-
quired the C&C server IP address or DNS hostname, the TCP port, and the communication
encryption key. This was followed by the framework preparing (line 6) and then sending the en-
crypted DarkComet QUICKUP command (line 9). The QUICKUP command can be described
as ”QUICKUP” with three random digits followed by the file to download and the post-command
DarkComet command to execute; separated by vertical bars (|). If the server was vulnerable
to the QUICKUP vulnerability the command would elicit a C&C acknowledgement response of
”AC ” (line 12) to which the research bot responded with an acknowledgement packet ”A” (line
13). The remainder of the function dealt with the downloading of the ”comet.db” file from the
C&C server. The size of the ”comet.db” file was provided by the C&C server (line 16) which was
used to determine when a file has been completely transferred (line 23). During the download,
the research bot responded with ”A” after each successful 4096 byte chunk of the file. This re-
sulted in the C&C server providing the next chunk of the ”comet.db” file. This module required
sufficient DarkComet command grammar to exploit the QUICKUP vulnerability present in the
C&C server, thus satisfying our design consideration of ”Command Grammar”.

The C&C Interaction module received message-queue events from the C&C Liveness module.
These messages contained the live C&C server IP address or DNS hostname, TCP port, and
communication encryption key. The C&C Interaction module initiated a connection to the C&C
server and exploited the QUICKUP vulnerability (detailed above) downloading the ”comet.db”
file. This file was parsed and the information relating to the victim computers, those computers
comprising the botnet, extracted and stored in the framework datastore. Data generated and
gathered by this module was stored in the ’victim’ table. All available information relating to
the victim computers was collected, which included that contained in Table 5.7.

A UML representation of the ”victim” table, along with an overview of the victim information
collected and stored is provided in Section 5.4. Analysis conducted on the information generated
by this module’s implementation is available in Section 6.5.

60

Listing 5.10: The Python code used to exploit the QUICKUP vulnerability.

1 def quickup(hostname, dport, encryption_key, body, attempt=0):

2 # create new socket connection

3 s = new_conn(hostname, dport, encryption_key)

4
5 # the QUICKUP command

6 cmd = "QUICKUP111|comet.db|UPLOADEXEC"

7
8 # encrypt the QUICKUP command and send to C&C

9 s.send(DCRC4.send(cmd, encryption_key))

10
11 # receive first "A.C" and respond with "A"

12 s.recv(1024)

13 s.send("A")

14
15 # extract download file size and respond with "A"

16 file_size = float(s.recv(1024))

17 s.send("A")

18
19 # keep a running total of the data recevied

20 data = 0.0

21
22 # continue receiving data until we reach "file_size"

23 while data < file_size:

24 s.send("A")

25 received = s.recv(4096)

26 data += len(received)

27
28 s.close()

5.4 Datastore Implementation

The framework datastore was responsible for the storage of all information generated by the
framework, excluding the bot binaries which were stored on the HDD of the analysis computer.
The datastore employed was a relational database, specifically PostgreSQL version 9.1 installed
from the Ubuntu 12.0420 software repository. Each framework system or module would interact
directly with the datastore storing its data in pre-allocated tables and columns. Figure 5.3
provides a UML [65] representation of the datastore tables, columns, foreign-keys, indexes, and
constraints.

As presented earlier, the Sample Acquisition module (Section 5.1.1) updated the ”samples”
table with the SHA256 hash of the newly acquired bot binary and the source of the file. In
our implementation due to the exclusive use of VT as a source, the ”source” was specified as
”vt”. The Sample Metadata Collection module (Section 5.1) updated the ”metadata” table with
information collected from VT along with the CTPH data generated by the module itself. The
Static Analysis module (Section 5.2.1) updated the ”cnc” table with information relating to the
C&C server and the ”cnc config” table with bot configuration information. The C&C Liveness

20http://www.ubuntu.com/

61

T
ab

le
5.

7:
C

&
C

In
fi

lt
ra

ti
on

m
o
d

u
le

d
at

a
m

o
d

el
.

C
o
lu

m
n

N
a
m

e
D

e
sc

ri
p

ti
o
n

T
y
p

e
E

x
a
m

p
le

D
a
ta

u
u

id
U

n
iq

u
e,

v
ic

ti
m

co
m

p
u

te
r

id
en

ti
fi

er
ge

n
er

at
ed

b
y

D
a
rk

C
o
m

et
.

T
h

e
U

U
ID

is
co

n
si

st
en

t
a
cr

o
ss

D
ar

k
C

om
et

ve
rs

io
n

s.

va
rc

h
ar

8
4
6
ee

3
4
0
-7

0
3
9
-1

1
d

e-
9
d

2
0
-8

0
6
e6

f6
e6

9
6
3
-1

0
1
7

64
95

91

p
u

b
li

c
ip

In
te

rn
et

-r
ou

ta
b

le
IP

ad
d

re
ss

of
th

e
v
ic

ti
m

co
m

p
u

te
r

in
et

41
.2

02
.2

33
.1

82

p
ri

va
te

ip
R

F
C

1
9
18

/
R

F
C

3
33

0
[3

8,
61

]
IP

ad
d

re
ss

of
th

e
v
ic

ti
m

co
m

p
u

te
r.

in
et

19
2.

16
8.

0.
10

1

cn
c

p
o
rt

C
&

C
T

C
P

p
or

t
u

se
d

fo
r

co
m

m
u

n
ic

at
io

n
b

e-
tw

ee
n

th
e

v
ic

ti
m

an
d

C
&

C
.

in
t

33
03

co
m

p
u

te
r

n
a
m

e
U

se
r-

d
efi

n
ed

n
am

e
of

th
e

v
ic

ti
m

co
m

p
u

te
r.

va
rc

h
ar

T
O

S
H

IB
A

-P
C

u
se

rn
a
m

e
U

se
rn

am
e

of
th

e
u

se
r

u
n

d
er

w
h
ic

h
th

e
D

ar
k
-

C
o
m

et
b

ot
b

in
ar

y
w

as
ex

ec
u

te
d

.
va

rc
h

ar
to

sh
ib

a

op
er

a
ti

n
g

sy
st

em
O

p
er

a
ti

n
g

sy
st

em
,

ve
rs

io
n

,
an

d
C

P
U

ar
ch

i-
te

ct
u

re
(3

2
or

64
-b

it
)

of
th

e
v
ic

ti
m

co
m

p
u

te
r.

va
rc

h
ar

W
in

d
ow

s
7

S
er

v
ic

e
P

ac
k

1
[7

60
1]

64
b

it

in
st

a
ll

a
ti

o
n

d
ir

ec
to

ry
D

ir
ec

to
ry

in
w

h
ic

h
th

e
b

ot
b

in
ar

y
w

as
in

-
st

al
le

d
on

th
e

v
ic

ti
m

co
m

p
u

te
r.

va
rc

h
ar

C
:
\

u
se

r
g
ro

u
p

D
a
rk

C
o
m

et
b

ot
m

as
te

r-
d

efi
n

ed
gr

ou
p

fo
r

th
e

v
ic

ti
m

co
m

p
u

te
r.

in
t

0

ge
o

co
u

n
tr

y
C

o
u

n
tr

y,
w

it
h

in
w

h
ic

h
th

e
v
ic

ti
m

co
m

p
u

te
r

re
si

d
es

,
b

as
ed

o
n

p
u

b
li

c
IP

ad
d

re
ss

.
ch

ar
(2

)
U

G

ge
o

o
rg

O
rg

a
n

is
a
ti

o
n

,
fo

r
ex

am
p

le
IS

P
,

w
h

ic
h

is
th

e
re

g
is

te
re

d
ow

n
er

o
f

th
e

v
ic

ti
m

co
m

p
u

te
r

p
u
b

-
li

c
IP

ad
d

re
ss

.

va
rc

h
ar

O
ra

n
ge

U
ga

n
d

a
L

td

ge
o

a
sn

A
S

N
o
f

th
e

v
ic

ti
m

co
m

p
u

te
rs

p
u

b
li

c
IP

ad
-

d
re

ss
.

in
t

36
99

1

62

Figure 5.3: Datastore Implementation.

63

module (Section 5.3.1) updated both the ”cnc ip” and ”cnc connections” tables with information
related to the IP address and connection success/failure information for C&C servers. The C&C
Interaction module (Section 5.3.2) updated the ”victims” table with information extracted from
the ”comet.db” files – downloaded from the C&C servers through exploitation of the QUICKUP
vulnerability. The ”cnc samples” and ”cnc victims” tables were used as junction tables [49]
between the ”cnc” and ”samples”, and ”cnc” and ”victims” tables respectively.

5.5 Framework Implementation Summary

This chapter presented the implementation of the automated botnet analysis and infiltration
framework used in the case-study, which follows in Chapter 6. For each of the systems and
modules implemented specifics regarding the implementation were provided including source
code snippets where applicable.

The Sample Acquisition module (Section 5.1.1) searched for and downloaded DarkComet
bot binaries from VT, a large malware repository, through utilising the private API provided by
VT. In total 83,175 bot binaries were collected and analysed by the framework.

The Sample Metadata Collection module (Section 5.1.2) downloaded analysis reports from
VT and extracted metadata information for each bot binary.Table 5.2 provides details on the
information extracted from these reports. Additionally, this module generated CTPH for each
bot binary which was used to compare bot binaries with default or minimal DarkComet configu-
rations even if the configurations differed. This had several advantages over simple cryptographic
hash comparisons.

The Static Analysis module (Section 5.2.1) was used to conduct static analysis of all of the bot
binaries downloaded by the Sample Acquisition module. Using this method the DarkComet bot
configuration information from 40,632 (48.75%) bot binaries was successfully extracted. This
module also extended a previously released ”configuration ripper” to support the extraction
of bot configuration information from DarkComet bot binaries between versions 3.x-5.x and
versions greater than 5.1 – the previous script only supported versions 3.x-5.x. This module
included support for the ZIP and RAR file formats, thereby increasing the number of potential
bot binaries which could be successfully analysed.

The C&C Liveness module (Section 5.3.1) was used to determine which of those C&C servers
whose information was extracted, by the Static Analysis module, were online and responding to
DarkComet bot registrations. This information was provided to the C&C Interaction module
for further processing.

The C&C Interaction module (Section 5.3.2) exploited the QUICKUP vulnerability, which
allowed for the downloading of arbitrary files from a vulnerable DarkComet C&C server. The
DarkComet comet.db was selected for download as it contains victim information which would
not be available otherwise. Research conducted for this work resulted in refinement of the
QUICKUP exploit presented by [20], in that entries were not created in the DarkComet C&C
server log files, and files of any size could be transferred – the original exploit source code had a
limit of 1024 bytes.

The Datastore implementation (Section 5.4) provided a detailed data model which included
the tables, columns, PostgreSQL data types, foreign keys and junction tables employed.

64

The addressing of each relevant design consideration (Section 4.1) by each module and system
was also presented; a summary follows:

1. Stealth: Stealth was maintained through the design and implementation decisions high-
lighted below:

(a) C&C Liveness and Interaction modules: The network source of the framework
is hidden through the use of TOR for all interactions with a botnet C&C server. The
TOR network was designed to provide anonymity to its users, allowing for the masking
of the framework’s source IP address. In addition, TOR allows for the specification
of the ”exit node” used providing the ability to choose which country the framework
would appear to originate from. The use of TOR was incorporated into the C&C
Liveness (Section 5.3.1 and C&C Interaction (Section 5.3.2) modules, as these were
the only two modules which made contact with C&C servers.

(b) C&C Interaction module: Through refinement of the QUICKUP vulnerability,
discovered by [20], it was possible to exploit the vulnerability without the DarkComet
C&C server software recording the interaction. This allowed for the C&C Interac-
tion module to perform its duties with significantly lowered concerns of detection
by the botmaster. Detailed information regarding the refinements can be found in
Section 5.3.2.

2. Scalability: The framework makes use of the Python scripting language for all modules.
It was chosen due to its low resource usage requirements and a plethora of suitable libraries.
Additionally the modules within the framework were designed for scalability, as follows:

(a) Message queue: Through the use of an event-driven architecture, whereby messages
are passed between modules as their participation is required as opposed to scheduled,
it is possible to ensure that only those modules required at that specific time made use
of available resources. The message queue also allowed for the distribution of modules
to separate computers thereby allowing for the distribution of tasks. This was realised
during the case-study by the fact that the initial Internet connection was insufficient
for large, latency sensitive communications, and large downloads from C&C’s with
short-lived availability. By utilising the distribution capabilities of the framework it
was possible to ”offload” all C&C server communication tasks to a host located in
The Netherlands. All other systems operated within the initial analysis environment
in South Africa. The message queue also allows developers interested in extending the
framework only having to accommodate specific messages of interest, and does not
require an understanding of all messages within the framework. Please see Section 4.6
for more information.

(b) Sample Analysis System: First subjecting collected bot binaries to an automated
static analysis module (Section 5.2.1) greatly reduced the number of bot binaries re-
quiring dynamic analysis. This reduced analysis time and also the resources required.
A bot binary presented to the static analysis module would require less than a second
of analysis time to extract the required information, whereas the dynamic analysis
module utilised a two minute execution timeout, the de facto default time. Therefore,
the static analysis module provided a significant resource advantage over the dynamic
analysis module.

(c) Dynamically increasing the number of concurrent modules employed: By

65

default, a single instance of each module was required for normal operation of the
framework. However, it was possible to have multiple modules execute simultaneously
to decrease processing time. Employing three static analysis workers to re-analyse all
the collected bot binaries, as opposed to the standard one worker which was used
during normal operation, re-analysis could occur in just one hour. This ”ability”
to employ additional modules for analysis and data collection was also used to save
time collecting metadata information for bot binaries which were collected before
development of the module was completed. In addition, employing multiple C&C
Liveness and C&C Interaction modules allowed for the monitoring of multiple botnets
concurrently from a single analysis computer.

3. Sample collection: During the case-study VT, arguably the largest online malware repos-
itory, was used for sample collection allowing for 83,175 unique bot binaries for analysis.

4. Anti-debugging: Due to the potential for the static analysis module to be able to extract
botnet information without requiring a debugger or executing the bot binary, some anti-
analysis methods were circumvented. However, successful bot configuration extraction
required that the bot binary made use of a predictable layout. This proved to be less of
a problem than first anticipated; it was possible to analyse and extract the DarkComet
configuration information from 48.85% of the collected bot binaries. Section 5.2.1 contains
additional information.

5. Protocol support: Through the pairing of an analysed bot binary with its corresponding
infiltration module, it is possible to support a large number of different botnet protocols.
The case-study required that the Liveness and Quickup modules successfully communicate
with the C&C servers through support for the custom, encrypted DarkComet communica-
tion protocol. By extending the framework with an understanding of a botnets command
grammar support for an almost infinite number of botnet families is possible.

Also presented was the interaction between systems and modules via the message queue. The
Sample Acquisition module would place events on the Sample Metadata Collection and Static
Analysis module queues for subsequent processing. Data from the Static Analysis module would
subsequently be placed on the C&C Liveness module message queue, which would in turn inform
the C&C Interaction module of C&C servers which were live. This would result in the C&C
Interaction module exploiting the QUICKUP vulnerability and gathering DarkComet victim
information.

The next chapter presents analysis of the data collected during the case-study, through the
implementation of the framework.

66

6
Case-study: Data Analysis

This chapter presents analysis of the information collected by the framework. Data was gathered
through an implementation of the proposed framework, detailed in Chapter 5 with analysis
conducted on the data collected by each system.

Section 6.1 presents analysis of the information generated by the Sample Acquisition module,
such as the number of samples collected and their storage requirements.

Section 6.2 provides information on the analysis of the metadata collected from VT along with
that generated by the framework itself. This includes the malware family, file type, file size,
and first seen distributions along with how CTPH hashes were used to identify DarkComet bot
binary versions.

Section 6.3 details the analysis conducted on the data extracted by the Static Analysis module.
Details include the average number of C&C servers configured per bot binary, the use of Fully
Qualified Domain Name (FQDN)s as well as the most common C&C ports, communication
encryption keys, and bot configuration options.

Section 6.4 contains information relating to the live C&C servers examined during the case study,
such as their geographic distribution.

Section 6.5 provides analysis gathered through the exploitation of the QUICKUP vulnerability
by the C&C Interaction module. Information includes the geographic location of victims as well
as those ISPs with the highest number of DarkComet infections.

6.1 Sample Acquisition Module Analysis

A total of 83,175 unique DarkComet bot binaries were collected by the Sample Acquisition
modules during the case-study, requiring 81,126,308 bytes of HDD space to store. In comparison
[30], [1], [78] and [62] gathered 800, 318, 5,645 and 304 unique bot binaries respectively. Whilst
this does not show that the Sample Acquisition module is superior to those of existing botnet

67

Table 6.1: A count of the identified malware families by Windows Defenders.

Malware Family Count % First detected

Backdoor:Win32/Fynloski.A 82761 99.5 2010-05-24

Backdoor:Win32/Fynloski.F 144 0.17 2010-02-22

None 43 0.05 2012-05-04

TrojanDropper:Win32/Gamarue.I 28 0.03 2013-06-25

Backdoor:Win32/Fynloski.L 23 0.03 2012-06-12

Backdoor:Win32/Fynloski 18 0.02 2013-06-21

Backdoor:Win32/Fynloski.J 17 0.02 2013-10-04

Adware:Win32/Cashback 14 0.02 2012-05-05

Backdoor:Win32/Fynloski.K 14 0.02 2011-11-04

VirTool:Win32/CeeInject.gen!KC 7 0.01 2013-07-15

analysis frameworks, it does illustrate that the analysis conducted was against a far greater
number of bot binaries than that of previous analysis.

The average file size of a case-study bot binary was 997,266 bytes. The largest bot binary
was 104,857,600 bytes in size, had the original filename of ”JTAG EMULATOR.exe”, and
had a file type of ”PE32 executable (GUI) Intel 80386, for MS Windows” identified by the
Linux ”file” command1. The smallest bot binary consumed just 102 bytes, had a filename
of ”b780e151b2abf287b174620a04f03a45” and was detected as a ”VAX COFF executable not
stripped” by ”file”. It is highly doubtful that a file of this size would be capable of infecting a
victim computer and may simply be a file fragment. Nonetheless it was identified by Windows
Defender as a Fynloski bot binary.

6.2 Sample Metadata Collection Module Analysis

Analysis was performed on the metadata collected by the Sample Metadata Collection module,
the output of which is presented in the subsequent sections.

6.2.1 Malware Family Distribution

Table 6.1 provides an overview of the top 10 malware families by count for the dataset. This
is according to analysis of the analysis reports provided by VT. Fynloski.A is by far the most
popular DarkComet variant with 99.5%, a significant lead over the second most common variant
being Fynloski.F at 0.17%.

An interesting observation is that even though the Sample Acquisition Module Section 5.1.1
explicitly searched for and downloaded only those bot binaries identified as being members of
the Fynloski family by Windows Defender, the processed VT analysis reports showed a number
of different malware families (see Table 6.1). In total, 49 different malware families or variants
were reported. Those bot binaries marked as ”None” in Table 6.1 were found to be benign
or non-malicious by Windows Defender, again pointing to an unknown discrepancy. These

1http://linux.die.net/man/1/file

68

bot binaries represented a small enough percentage of the dataset and were therefore deemed
insignificant.

This discrepancy could point to the similar observations witnessed by Canto [10] in which the
researchers detected a large number of variations in the malware family assigned by anti-virus
software vendors to the same malware sample. Whilst they were unable to obtain a definitive
answer as to the reasons they present their own hypotheses, which are that vendors at a later
date update their signature databases to better classify or incorrectly classify older malware
samples. Neither of these two hypotheses were tested by this researcher. This behaviour may
further be explained by the time delay between bot binary and analysis report collection by this
researcher, which for some bot binaries may have been as long as six months. This was due to
the researcher collecting bot binaries but not analysis reports for prior research [23].

Table 6.2 provides a breakdown of the number of dataset bot binaries detected as malicious
across all the anti-virus engines used by VT. The table columns are:

• Anti-virus: The vendor or anti-virus solution’s name.

• Scanned: The count of the bot binaries scanned by the anti-virus solution.

• Positive: A count of bot binaries identified as malicious by the anti-virus solution.

• %: The percentage of scanned bot binaries identified as being malicious.

Due to VT constantly adding or removing the anti-virus solutions used in the scans there will be a
discrepancy between the numbers of bot binaries scanned by each anti-virus solution. [1] reported
a detection rate of 71.35% for ClamAV and 93.29% for Norton and [78] a detection rate of between
50.4% and 92.80% for bot binaries collected during their research. This research found a far larger
detection rate discrepancy of between 2.05% and 98.11% – when excluding Windows Defender
from the results. This may be caused by the far greater number of anti-malware solutions
employed. An interesting observation is that for only 14 bot binaries a positive consensus was
reached, that is all the anti-virus solutions employed by VT regarded the bot binary as malicious.
The average consensus detection rate for bot binaries in the dataset was 78.73%.

It should be noted that this is not a comparison or commentary on the detection capabilities of
the different anti-virus solutions, but instead just an observation of this dataset.

In 43 instances, Windows Defender reported the bot binaries as benign or ”None”. Table 6.3
presents the detection results of the other anti-virus solutions for these 43 ”benign” bot binaries
marked. As can be seen, a large number of these bot binaries are marked as malicious by
other anti-virus solutions with ”McAfee-GW-Edition” identifying 90.48% of these ”benign” bot
binaries as malicious.

6.2.2 File Type Distribution

The majority (93.23%) of the bot binaries in the dataset were identified as being PE file types by
VT which was not unexpected, due to DarkComet being developed specifically for the Microsoft
Windows operating system. Please see Table 6.4 for a listing of the top 10 most common file
types based on a count of the bot binaries. Compressed file types were also found to be very
popular, in terms of the number of different file types, with the most common being RAR [64],
ZIP [57], GZIP [21], CAB [50], and 7ZIP [56].

69

T
ab

le
6.

2:
D

et
ec

ti
on

ra
te

s
ac

ro
ss

al
l

co
ll

ec
te

d
b

ot
b

in
ar

ie
s.

A
n
ti

-v
ir

u
s

S
c
a
n

n
e
d

P
o
si

ti
v
e
s

%
A

n
ti

-v
ir

u
s

S
c
a
n

n
e
d

P
o
si

ti
v
e
s

%

A
V

G
8
2
75

3
7
90

31
95

.5
K

as
p

er
sk

y
82

43
7

80
87

5
98

.1
1

A
d

-A
w

a
re

4
6
39

2
4
51

45
97

.3
1

K
in

gs
of

t
81

90
0

58
72

9
71

.7
1

A
eg

is
L

a
b

2
5
91

8
53

1
2.

05
M

al
w

ar
eb

y
te

s
83

05
9

67
22

0
80

.9
3

A
g
n

it
u

m
8
3
06

2
3
08

14
37

.1
M

cA
fe

e
82

95
0

77
95

2
93

.9
7

A
h

n
L

ab
-V

3
7
7
74

8
6
55

64
84

.3
3

M
cA

fe
e-

G
W

-E
d

it
io

n
82

74
3

77
94

1
94

.2

A
n
ti

V
ir

8
3
12

6
8
07

21
97

.1
1

M
ic

ro
W

or
ld

-e
S

ca
n

83
01

7
73

26
0

88
.2

5

A
n
ti

y
-A

V
L

8
1
75

3
4
18

12
51

.1
4

M
ic

ro
so

ft
83

13
1

83
08

8
99

.9
5

A
va

st
8
2
65

8
7
92

98
95

.9
4

N
A

N
O

-A
n
ti

v
ir

u
s

83
07

7
66

87
3

80
.5

B
ai

d
u

17
0

16
9.

41
N

or
m

an
83

00
1

73
29

3
88

.3

B
ai

d
u

-I
n
te

rn
a
ti

o
n

al
6
0
58

0
2
04

34
33

.7
3

P
C

T
o
ol

s
30

67
2

22
86

6
74

.5
5

B
it

D
ef

en
d

er
8
3
13

3
7
99

13
96

.1
3

P
an

d
a

82
81

7
78

99
1

95
.3

8

B
ka

v
5
6
24

1
4
21

83
75

Q
ih

o
o-

36
0

37
60

3
32

28
0

85
.8

4

B
y
te

H
er

o
8
0
79

5
3
20

9
3.

97
R

is
in

g
82

74
2

60
71

7
73

.3
8

C
A

T
-Q

u
ic

k
H

ea
l

8
3
12

8
5
54

04
66

.6
5

S
U

P
E

R
A

n
ti

S
p
y
w

ar
e

83
03

8
39

88
6

48
.0

3

C
M

C
4
2
79

8
2
94

47
68

.8
S

op
h

os
78

12
3

73
91

4
94

.6
1

C
la

m
A

V
8
2
64

4
4
22

98
51

.1
8

S
y
m

an
te

c
82

24
2

72
41

3
88

.0
5

C
om

m
to

u
ch

8
3
06

9
6
55

86
78

.9
5

T
en

ce
n
t

61
28

44
46

72
.5

5

C
om

o
d

o
8
2
86

3
7
08

60
85

.5
1

T
h

eH
ac

ke
r

83
10

1
31

73
9

38
.1

9

D
rW

eb
8
1
59

6
7
64

47
93

.6
9

T
ot

al
D

ef
en

se
83

13
5

52
86

6
63

.5
9

E
S

E
T

-N
O

D
32

8
2
82

2
8
09

29
97

.7
1

T
re

n
d

M
ic

ro
82

70
2

69
18

5
83

.6
6

E
m

si
so

ft
8
2
92

5
7
93

02
95

.6
3

T
re

n
d

M
ic

ro
-H

ou
se

C
al

l
82

52
6

72
26

7
87

.5
7

F
-P

ro
t

8
3
01

9
6
24

81
75

.2
6

V
B

A
32

82
57

6
67

34
5

81
.5

6

F
-S

ec
u

re
7
4
95

4
7
31

04
97

.5
3

V
IP

R
E

82
64

0
77

14
4

93
.3

5

F
o
rt

in
et

8
2
83

5
7
55

50
91

.2
1

V
iR

ob
ot

83
11

2
47

40
5

57
.0

4

G
D

a
ta

8
3
06

9
8
09

27
97

.4
2

Z
il

ly
a

79
79

60
80

76
.2

Ik
ar

u
s

8
3
08

1
7
86

83
94

.7
1

Z
on

er
1

0
0

J
ia

n
g
m

in
8
2
63

9
6
49

04
78

.5
4

eS
af

e
39

99
18

0
4.

5

K
7A

n
ti

V
ir

u
s

8
3
13

1
7
38

17
88

.8
n

P
ro

te
ct

82
55

9
52

63
2

63
.7

5

K
7G

W
8
3
12

2
7
40

63
89

.1
N

=
83

1
7
5

70

T
a
b

le
6.

3:
D

et
ec

ti
on

ra
te

s
fo

r
al

l
b

ot
b

in
ar

ie
s

id
en

ti
fi

ed
as

b
en

ig
n

b
y

W
in

d
ow

s
D

ef
en

d
er

.

A
n
ti

-v
ir

u
s

S
c
a
n

n
e
d

P
o
si

ti
v
e
s

%
A

n
ti

-v
ir

u
s

S
c
a
n

n
e
d

P
o
si

ti
v
e
s

%

A
V

G
42

33
78

.5
7

K
7G

W
43

28
65

.1
2

A
d

-A
w

a
re

38
34

89
.4

7
K

as
p

er
sk

y
43

38
88

.3
7

A
eg

is
L

a
b

13
1

7.
69

K
in

gs
of

t
43

20
46

.5
1

A
g
n

it
u

m
43

23
53

.4
9

M
al

w
ar

eb
y
te

s
43

17
39

.5
3

A
h

n
L

ab
-V

3
36

16
44

.4
4

M
cA

fe
e

42
37

88
.1

A
n
ti

V
ir

43
36

83
.7

2
M

cA
fe

e-
G

W
-E

d
it

io
n

42
38

90
.4

8

A
n
ti

y
-A

V
L

43
16

37
.2

1
M

ic
ro

W
or

ld
-e

S
ca

n
43

35
81

.4

A
va

st
43

35
81

.4
M

ic
ro

so
ft

43
0

0

B
ai

d
u

-I
n
te

rn
a
ti

o
n

al
39

29
74

.3
6

N
A

N
O

-A
n
ti

v
ir

u
s

43
33

76
.7

4

B
it

D
ef

en
d

er
42

35
83

.3
3

N
or

m
an

43
34

79
.0

7

B
ka

v
36

15
41

.6
7

P
C

T
o
ol

s
5

1
20

B
y
te

H
er

o
40

0
0

P
an

d
a

43
37

86
.0

5

C
A

T
-Q

u
ic

k
H

ea
l

43
16

37
.2

1
Q

ih
o
o-

36
0

27
21

77
.7

8

C
M

C
30

8
26

.6
7

R
is

in
g

42
4

9.
52

C
la

m
A

V
43

7
16

.2
8

S
U

P
E

R
A

n
ti

S
p
y
w

ar
e

43
9

20
.9

3

C
om

m
to

u
ch

43
15

34
.8

8
S

op
h

os
42

34
80

.9
5

C
om

o
d

o
43

34
79

.0
7

S
y
m

an
te

c
42

36
85

.7
1

D
rW

eb
40

32
80

T
h

eH
ac

ke
r

43
13

30
.2

3

E
S

E
T

-N
O

D
32

43
36

83
.7

2
T

ot
al

D
ef

en
se

43
0

0

E
m

si
so

ft
43

35
81

.4
T

re
n

d
M

ic
ro

42
22

52
.3

8

F
-P

ro
t

43
5

11
.6

3
T

re
n

d
M

ic
ro

-H
ou

se
C

al
l

42
25

59
.5

2

F
-S

ec
u

re
40

34
85

V
B

A
32

43
23

53
.4

9

F
o
rt

in
et

43
36

83
.7

2
V

IP
R

E
42

36
85

.7
1

G
D

a
ta

43
37

86
.0

5
V

iR
ob

ot
43

4
9.

3

Ik
ar

u
s

43
34

79
.0

7
eS

af
e

3
0

0

J
ia

n
g
m

in
43

17
39

.5
3

n
P

ro
te

ct
43

9
20

.9
3

K
7A

n
ti

V
ir

u
s

43
27

62
.7

9
N

=
43

71

Table 6.4: Top 10 bot binary file types by count.

Rank File Type Count %

1 Win32 EXE 77545 93.23

2 RAR 3465 4.17

3 ZIP 831 1.00

4 DOS EXE 543 0.65

5 GZIP 474 0.57

6 unknown 73 0.09

7 CAB 69 0.08

8 Email 46 0.06

9 7ZIP 32 0.04

10 Win32 DLL 21 0.03
N = 83175

Table 6.5: Top 9 bot binary file type signatures by count, excluding unknown.

Rank File Type String Hexadecimal

1 Win32 EXE MZ 4D 5A

2 RAR Rar! 52 61 72 21

3 ZIP PK 50 4B

4 DOS EXE MZ 4D 5A

5 GZIP No string representation 1F 8B

7 CAB MSCF 4D 53 43 46

8 Email * *

9 7ZIP 7z BC AF

10 Win32 DLL MZ 4D 5A

* Bot binaries identified as being of file type ”Email” are text files which conform to a specific
format [18].

Those looking to infect computers with botnet software often attempt to disguise their malicious
files through ”binding” or changing the display icon. Another method is to distribute the bot
binary as an archive, again relying on a victim’s susceptibility to social engineering techniques
for successful infection. The file type of the malware sample is determined at upload time by the
VT analysis system and extracted from the analysis report. The malware samples are presented
as-is to the anti-virus solutions employed by VT for scanning. Therefore should a malware
sample be an archive or obfuscated VT relies on the anti-virus software to perform any required
decompression or de-obfuscation functions during analysis.

The most common means of identifying file types is through an examination of the first 2-4
bytes of a file – typically referred to as the file signature or ”magic number”. For example, the
magic number for a MS-DOS executable is the string ”MZ ” or ”4D 5A” in hex [19]. Microsoft
introduced the PE file format [58] with Windows NT 3.1, which is an extension of the MS-DOS
file format and is typically called a Win32 executable. PE files also make use of the ”MZ ” magic
number, but contains a MS-DOS stub with the text ”This program cannot be run in DOS mode”
or similar which indicates that the file would need to be executed in a GUI to function correctly.
With this understanding Win32 EXE files refer to PE files and DOS EXE refer to MS-DOS files.
Table 6.5 provides a listing of some common file type signatures.

72

Table 6.6: Top 10 data set bot binary file sizes by count.

Rank File Size Count %

1 674304 8562 10.29

2 673792 5814 6.99

3 774144 3124 3.76

4 774656 1897 2.28

5 706560 1564 1.88

6 257536 1402 1.69

7 674816 1382 1.66

8 675840 960 1.15

9 258048 899 1.08

10 974848 845 1.02
N = 83175

Table 6.7: Bot binaries with identical file sizes to that of minimalist configuration bot binary.

DarkComet version File size (bytes) Count %

2.2 732672 83 0.1

3.0.2 730112 141 0.17

3.2 650240 161 0.19

3.3 673792 5814 6.99

4 663040 182 0.21

4.2 682496 100 0.12

5 661504 222 0.27

5.1 665088 263 0.32

5.3 674304 8562 10.29
N = 83175

6.2.3 File Size Analysis

A minimal DarkComet version 5.3.x bot binary configured with minimalist settings has a file
size of 674,304 bytes and is the smallest possible size for a working DarkComet version 5.3.x bot
binary. This was determined through this researcher building a bot binary using the DarkComet
version 5.3.1 builder. 8,562 of the 83,175 bot binaries (10.29%) in the dataset match this file
size exactly (see Table 6.6). These top 10 bot binary sizes account for 31.8% of the total HDD
space across the dataset. All 8,562 bot binaries identified were identified by Windows Defender
as belonging to the ”Backdoor:Win32/Fynloski.A” malware family.

This researcher created a listing of the bot binary file size for a minimalist per DarkComet version.
Using this file size method of identification 5,814 bot binaries (6.99%) match the minimum file size
of a DarkComet version 3.3 bot binary. See Table 6.7 for a listing of the file size per DarkComet
version using a default or minimalist configuration. Changes to the minimalist settings could have
an impact on the DarkComet file size if these configuration values differ in length or additional
configuration options are set, which do not form part of a minimalist DarkComet configuration.
As a reminder only those configuration options set are included in a DarkComet bot binary as
a key-value pair which is embedded within the bot binary. Therefore, if a configuration option
is not set it is not included and will not have an impact on the file size.

73

Figure 6.1: Screenshot of File Binder menu option from the DarkComet builder.

Another factor influencing file size is the ”binding” functionality which can be used to disguise or
obfuscate the DarkComet bot binary. Binding is the practice of combining two files into a single
executable, such that when executed both executables are executed in parallel. Botmasters will
typically bind and advertise their bot binaries as popular commercial software or computer games,
due to their appeal to a wide range of audiences, thus increasing the possibility that a victim will
execute the ”bound” executable. Were a victim to execute the ”bound” executable both the non-
malicious and bot binary are executed. Internet users have become wary of malicious executables
which have simply been renamed to that of popular software or games and are therefore suspicious
of small executable files. This method of infection can be thought of as a ”Trojan Horse”
type of social engineering attack. This binding functionality can be configured from within the
DarkComet builder from the ”File Binder” menu option, shown in Figure 6.1.

The effect on the size of the resulting bound bot binary is most often dependant on the size of
the non-malicious software used in the binding. As software sizes increase so too have the size of
these bound executables. The result of these bindings can be seen in Table 6.8 which is a listing
of the ten largest bot binaries collected.

By performing Internet searches of the submission names it became apparent what decoy software
was used to lure potential victims into executing the ”bound” executable. This could provide
insights into the intended victims. Unfortunately, due to the interpretation of the search results
being done manually it is not possible to always determine the decoy software category for each
bot binary. Alternatively or in combination with binding, a botmaster may change a bot binary’s
display icon to match that of other non-malicious software or file type. This is again used to
not raise the suspicion of a potential victim and potentially increase the possibility that a bot
binary will be executed. This changing of the display icon functionality can also be configured
from within the DarkComet builder from the ”Choose Icon” menu option. A screenshot of the
display icons for these bot binaries, as seen in Windows Explorer, is shown in Figure 6.2.

74

T
ab

le
6.

8:
T

h
e

10
b

ot
b

in
ar

ie
s

w
it

h
th

e
la

rg
es

t
fi

le
si

ze
.

R
a
n

k
S

iz
e

(b
y
te

s)
S

H
A

2
5
6

F
il
e

T
y
p

e
S

u
b

m
is

si
o
n

N
a
m

e
s

D
is

g
u

is
e

1
1
0
48

5
7
60

0
6
b

e1
3
c4

ff
1
2
1
3
d

5
a
fa

8
8
1
a
1
9
3
3
7
9
c7

d
c9

6
1
b

f9
2
4

2
1b

3
5b

9
32

6
7
77

4
89

8a
4d

b
10

5
W

in
32

E
X

E
J
T

A
G

E
M

U
L

A
-

T
O

R
.e

x
e

S
of

tw
ar

e

2
6
7
10

8
8
64

3
7
05

2b
0
0b

3
1
1
e7

b
d

56
9
4b

12
8
b

f5
34

0c
19

44
7
ae

0
8
d

6
6
f9

5
3
0c

a
4
d

a
7d

eb
b

6b
67

95
W

in
32

E
X

E
d

c
C

op
y.

ex
e

U
n

k
n

ow
n

3
6
4
91

3
4
08

4
1
8
3
e3

9
a
3
8
6
e7

7
e5

4
1
3
6
d

3
3
b

6
7
0
3
a
6
1
b

3
0
5
0
a
0

a
71

3
5
73

3
8
c4

2
3
1c

cb
02

7d
a4

a6
7

W
in

32
E

X
E

M
in

ec
ra

ft
1.

6.
2

F
u

ll
V

er
si

on
O

n
li

n
e

W
it

h
F

P
S

B
O

O
S

T
.e

x
e

G
am

e

4
6
4
77

2
7
78

fd
d

2
6
0
d

8
3
9
c1

6
c1

4
7
6
3
5
d

c1
0
4
f0

d
8
b

4
b

a
0
d

cb
a
1

ea
0f

e8
a6

a
00

b
cf

b
0a

7c
07

3d
10

R
A

R
M

a
p

le
re

G
ir

eb
il

m
eP

a
ck

.
ra

r
G

am
e

5
6
4
45

1
0
72

d
8
2
2
ff

9
0
a
7
0
0
a
4
b

cf
1
9
e1

b
4
3
e7

ef
4
0
fa

a
b

9
a
a
b

c7
7
b

7
fe

eb
20

8
6
21

e5
d

39
59

f9
11

W
in

32
E

X
E

m
sd

cs
c.

ex
e

U
n

k
n

ow
n

6
6
2
64

1
2
43

c7
7
5
c8

5
d

e9
8
d

3
3
7
a
c3

3
0
8
2
4
0
a
d

0
d

3
d

1
a
b

9
cf

9
ff

b
9f

8
05

6
6
b

7
1
d

9
9c

46
a6

75
fb

19
R

A
R

N
ar

u
to

M
u

ge
n

20
13

.r
ar

G
am

e

7
6
2
63

0
9
12

3
fd

4
0
c3

3
f7

c4
1
c4

8
1
5
6
5
d

2
6
6
f6

6
2
6
a
4
3
a
8
5
7
e1

1
b

4
b

4
9
b

f1
b

a
9
42

5
a5

b
b

c0
4a

a4
c

W
in

32
E

X
E

19
16

.e
x
e

G
am

e

8
6
1
49

3
2
48

eb
4
6
f1

b
7
5
3
d

e0
6
e8

a
f0

8
2
1
ce

6
a
d

d
7
4
d

b
c2

3
b

6
5
7

f3
b

0
4e

ca
9f

c1
c7

0
b

63
49

50
20

7
W

in
32

E
X

E
te

m
p

.e
x
e

U
n

k
n

ow
n

9
6
0
22

6
5
87

b
9
a
7
ff

7
d

a
6
b

4
7
ed

2
e5

e6
5
f3

2
c6

3
2
d

8
0
4
e7

b
e1

6
6
c

8
95

a
cb

6
1
d

a
c9

fd
a5

5f
8d

28
a0

R
A

R
H

ac
k
P

R
L

(E
ly

p
s)

.r
ar

G
am

e

10
5
8
79

9
6
16

9
7
7
5
c1

4
cd

a
4
c6

a
5
d

5
4
f8

8
a
0
7
9
f9

8
4
1
d

3
7
2
fe

a
1
2
f

8
86

1
1
cf

2
ff

43
a
86

7
b

40
a0

7c
b

W
in

32
E

X
E

M
in

ec
ra

ft
S

et
u

p
.E

X
E

G
am

e

75

Figure 6.2: Display icons of bound files as seen in Windows Explorer.

Table 6.9: Hard disk space usage by Windows Defender identified malware family.

Malware Family Disk Space (MB) %

Backdoor:Win32/Fynloski.A 82230.40 99.14

Backdoor:Win32/Fynloski.L 292.44 0.35

Backdoor:Win32/Fynloski.F 119.72 0.14

None 36.10 0.04

TrojanDropper:Win32/Gamarue.I 24.83 0.03

Backdoor:Win32/Fynloski 23.81 0.03

Backdoor:Win32/Fynloski.K 13.16 0.02

Backdoor:Win32/Fynloski.J 9.38 0.01

VirTool:Win32/CeeInject.gen!KC 7.28 0.01

Adware:Win32/Cashback 3.70 0.00
Total MB = 82947.64

Six of these bot binaries from Table 6.8 namely 1, 3, 5, 7, 8, 10, have had their icons changed
to something less conspicuous. When executing bot binary 3 the Minecraft2 computer game
installation software is started and the victim is presented with the screenshot in Figure 6.3. Bot
binaries 2, 4, 6, and 9 have no visual effect when executed, which could point to an error by
the botmaster when creating the bound executable or a non-graphical binding application was
used.

A breakdown of HDD storage requirements for each malware family along with the percentage
of the total disk space used can be found in Table 6.9.

2http://minecraft.net/

76

Figure 6.3: Execution of bot binary with hash of 4183....

77

Table 6.10: A breakdown of the First Seen distribution over the entire bot binary dataset.

Year Count %

2010 105 0.13

2011 2352 2.83

2012 3935 4.73

2013 45478 54.68

2014* 29760 35.78

Unknown** 11 0.01
N = 83175

* Data collection halted in June 2014, therefore only 6 months of data was collected for 2014
** Bot binaries labelled as Unknown did not have a First Seen date value present in the VirusTotal analysis report

Table 6.11: A count of the dataset bot binaries analysed by VirusTotal during 2013.

Month Year Bot Binaries %

December 2013 5150 11.32

November 2013 4968 10.92

October 2013 5212 11.46

September 2013 5965 13.12

August 2013 12358 27.17

July 2013 7081 15.57

June 2013 1839 4.04

May 2013 818 1.80

April 2013 894 1.97

March 2013 507 1.11

February 2013 391 0.86

January 2013 475 1.04
N = 45478

6.2.4 First Seen Distribution

Table 6.10 provides a breakdown per year of First Seen distribution over the dataset. First Seen
is the date and time each unique malware sample was first uploaded to VT for analysis.

What is quickly noticeable is the significant increase in the number of DarkComet bot binaries
analysed by VT in 2013 when compared to previous years, with an increase of approximately
1156% (1155, 73%) over 2012. Through plotting the number of DarkComet bot binaries analysed
(as shown in Figure 6.4) per month since 2010, an upward trend during June of 2013 with a peak
in August is seen. A breakdown of the number of bot binaries analysed is presented in Table 6.11.
More than double the number of bot binaries were uploaded and analysed in June 2013 when
compared to May of the same year. These numbers continued to climb until peaking at 12,358
bot binaries in August before dropping and remaining stable at around the 5,000 per month
mark in September.

These numbers continued into 2014, climbing to approximately 6000 bot binaries per month.

A graphical representation of the above information is presented in Figure 6.4.

The average number of bot binaries per month in 2013 was 3,789.83 and 5,777.4 for 2014. Should
the trend continue the number of DarkComet bot binaries analysed by VT in 2014 (69,329) is

78

Table 6.12: A count of dataset bot binaries analysed by VirusTotal during Jan-Jun 2014.

Month Year Bot Binaries %

June 2014 873 2.93

May 2014 5982 20.10

April 2014 6057 20.35

March 2014 5955 20.01

February 2014 6356 21.36

January 2014 5588 18.78
N = 29760

Figure 6.4: DarkComet bot binaries submitted to VirusTotal between 2010 and 2014.

79

Table 6.13: The 10 oldest bot binaries by order by First Seen date.

Rank Malware Family First Seen Submissions

1 Backdoor:Win32/Fynloski.F 2010-02-22 11

2 Backdoor:Win32/Fynloski.F 2010-03-25 3

3 Backdoor:Win32/Fynloski.F 2010-04-04 4

4 Backdoor:Win32/Fynloski.F 2010-04-08 4

5 Backdoor:Win32/Fynloski.F 2010-04-16 4

6 Backdoor:Win32/Fynloski.F 2010-04-16 3

7 Backdoor:Win32/Fynloski.F 2010-04-23 2

8 Backdoor:Win32/Fynloski.F 2010-04-23 2

9 Backdoor:Win32/Fynloski.A 2010-05-24 4

10 Backdoor:Win32/Fynloski.F 2010-05-26 2
N = 83175

set to exceed the 2013 number (45,478) by 52.45%. This shows an obvious gain in popularity
for the DarkComet RAT even though development of the software has been abandoned and the
builder module is no longer available from the author’s website.

Analysis of the oldest bot binaries by submission date within the data set shows that ”Back-
door:Win32/Fynloski.F” is the oldest version of DarkComet submitted to VT, see Table 6.13.
This family represents 9 out of the top 10 oldest bot binaries with a single ”Backdoor:Win32/Fynloski.A”
being the 9th oldest.

6.2.5 Using Fuzzy Hashing to Identify DarkComet Versions

By making use of CTPH [43] it is possible to compare bot binaries, which have different SHA256
hashes, and still determine a percentage of similarity. This would not be possible using tra-
ditional cryptographic hashing algorithms as even a small change of a file would result in a
different hash value being produced, even if the files were otherwise identical. For example,
building a DarkComet version 5.3 bot binary with a minimal, default configuration produces a
file with SHA256 hash of ”b6e6de14a66952d61d0385a6bb3c40821b6c60d91ae13c601eb7059b484
cde74”. Using the same configuration but changing the default C&C TCP port from 1604 to
1605 produces a file with a SHA256 hash of ”c0756b942cf474f6bd6ed4a28bad31e55fce608a4ba
e5d1a40ed5a2db2300bc1”. Therefore simply comparing cryptographic hashes would not reveal
any relationship even though the configurations were identical except for the C&C port and the
files were created using the same version of the DarkComet builder module. It is important to
note that due to the insertion of metadata within PE files, such as the compilation timestamp
it is unlikely that two DarkComet bot binaries will produce identical SHA256 hashes.

As an experiment, this researcher compared the CTPH hash values of bot binaries within the
dataset with those of known default DarkComet bot binaries. This could allow for the identifi-
cation of the DarkComet version of a bot binary even though configuration options differ from
the default. Generating the CTPH hash values for these bot binaries produces Table 6.14.

A comparison of the CTPH hash values for the two bot binaries referred to earlier produced a
resultant 99% similarity between them. Considering that the only change was that of the TCP
port number from 1604 to 1605 this could be expected. Changing the C&C DNS hostname from
’127.0.0.1’ to a fictitious DNS hostname of ’darkcomet.example.com’ and the C&C TCP port

80

Table 6.14: The SHA256 and CTPH hash values of a minimalist DarkComet 5.3 bot binary.

No. Comment SHA256 CTPH

1 Port 1604 b6e6de14a66952d61d0385a6b
b3c40821b6c60d91ae13c601eb
7059b484cde74

12288:y9HFJ9rJxRX1uVVjo
aWSoynxdO1FVBaOiRZTE
RfIhNkNCCLo9Ek5C/h0:eZ1
xuVVjfFoynPaVBUR8f+kN1
0EBW

2 Port 1605 c0756b942cf474f6bd6ed4a28b
ad31e55fce608a4bae5d1a40ed
5a2db2300bc1

12288:y9HFJ9rJxRX1uVVjo
aWSoynxdO1FVBaOiRZTE
RfIhNkNCCLo9Ek5C/hw:eZ
1xuVVjfFoynPaVBUR8f+kN
10EBu

from ’1604’ to ’1605’ also produced a 99% similarity result. Utilising the Python bindings3 for
ssdeep4, a library used for the creation of CTPH, allowed for the computation and comparison
of bot binaries. The ssdeep hash values for the default configuration DarkComet bot binaries is
presented in Table 6.15.

Performing CTPH hash comparisons for all bot binaries against those of a default minimalist
bot binary and recording those which return a 100% or 99% similarity, produced the results
displayed in Table 6.16.

This shows that 91 of the bot binaries were created with a default DarkComet version 5.3
configuration and 2933 (3.52%) had a 99% similarity. In total 4.28% had a 99-100% similarity
with a minimal or default configured bot binary.

6.3 Sample Analysis System Analysis

Presented in this section are the results of the analysis of the information extracted through
the static analysis processing of the DarkComet bot binaries in the dataset. It was possible to
successfully extract the DarkComet bot configuration from 40,632 (48.85%) of the total dataset
of 83,175 DarkComet bot binaries.

6.3.1 Statically Analysed Malware Family Distribution

An interesting observation was that the malware family reported by Windows Defender for
bot binaries did not necessarily correspond with that of the RAT type determined through an
examination via static analysis methods. DarkComet configuration information is contained
within the bot binary using two different storage schemes (see Section 3.4). Using this difference
it was possible to classify bot binaries as belonging to either versions 3.x-5.0 or versions 5.1+ and
assigning the identifiers of ”dc-v3 ” and ”dc-v51 ” respectively. The majority of the bot binaries
within the dataset belonged to the latter classification (dc-v51) with 35,535 (87.40%) and 5,097
(12.6%) beloning to dc-v3 bot binaries.

3http://pypi.python.org/pypi/ssdeep
4http://ssdeep.sourceforge.net/

81

Table 6.15: CTPH values for a default configured DarkComet bot binary per version.

DarkComet version CTPH

2.2 12288:MhA+xMh1qRIKvx5ciUnnECuFObYBqi07ftmSjVr
G8oV09e6RZKOh:tgkKvjPaEFFObYj07tdjFvoVWeM

3.0.2 12288:iaAchpWsuVTv7ItY8XljyypHP7cOLBev03hlULsm
WZ++09ZcKDVsgde+:zAEENIq8XwyVPQclDq/+WnpsS
e+

3.2 12288:gpwABK90BOe/x9lPAYvxPQVjdsAY2XjWlnlpTM
MXG91uhKIXn/0:awAcu99lPzvxP+Bsz2XjWTRMQckkI
Xns

3.3 12288:x9AFlAd0Z+89cxTGzO4AucTD8QP2lmFSrVs9Lqn
KVW:HAQ6Zx9cxTmOrucTIEFSpOGEW

4 12288:86A84PaHhfD/tV9sj5NKR0pau9XGyu2qBVGLQyT
Pfhj+:RAmBpVKHu0Mu9Xo20VGLVP5j+

4.2 12288:Wfbh3edoSdPDze9LBApPsKNoeP313umLcUmyqC
+N/jXI0fZ:kR8oYzS12PVaA3LLRHqC+ljXBZ

5.0 12288:w8UaT9XY2siA0bMG09xD7I3Gg8ecgVvfBoCDBO
QQYbVXpuy1f/gORixD:pUKoN0bUxgGa/pfBHDb+y1Hg
Z9

5.1 12288:bk0QVlhmPojAPTMEsUTg0oChO/Q2JbsbjPbN5qh
RTtYe3f+Iw86k/9/+F:Q0QRWoJEfg0oChGdJQbjPbNW
5tYeP+Gg

5.3 12288:y9HFJ9rJxRX1uVVjoaWSoynxdO1FVBaOiRZTER
fIhNkNCCLo9Ek5C/h0:eZ1xuVVjfFoynPaVBUR8f+kN10
EBW

Table 6.16: CTPH comparison between dataset and minimalist DarkComet bot binaries.

DC Version 100 % 99 %

2.2 0 7

3.0.2 0 87

3.2 2 101

3.3 1 42

4 3 38

4.2 0 3

5.0 5 121

5.1 5 118

5.3 91 2933

82

Table 6.17: Comparison between rat type designation and Windows Defender malware family.

DarkComet version Malware Family Count %

dc-v51 Backdoor:Win32/Fynloski.A 35511 87.40

dc-v51 Not Scanned 16 0.04

dc-v51 Backdoor:Win32/Fynloski.K 7 0.02

dc-v51 Virus:Win32/Virut.BN 1 0.00

dc-v3 Backdoor:Win32/Fynloski.A 5094 12.54

dc-v3 Backdoor:Win32/Fynloski.K 3 0.00
N = 40632

Table 6.18: The file type distribution successfully analysed by the Static Analysis module.

Rank File Type Count % Bot binary %

1 Win32 EXE 38380 80.43 49.49

2 RAR 1552 3.25 44.79

3 DOS EXE 424 0.89 78.08

4 ZIP 266 0.56 32.00

5 JAR 4 0.01 50.00

6 Unknown 3 0.01 4.11

7 Win32 DLL 3 0.01 14.29
N = 40632

A comparison of these version numbers with that of the malware family as detected by Windows
Defender shows a disparity between versions. It would be logical to assume that DarkComet
versions should correspond to specific malware families, for instance all dc-v51 bot binaries
should correspond to a malware family such as ”Backdoor:Win32/Fynloski.A”, however that
was not the case. As can be seen in Table 6.17 dc-v51 and dc-v3 bot binaries share malware
families when there should be a distinct family name assigned. A possible reason for this is that
Windows Defender’s heuristics engine is classifying the bot binaries based on their behaviour
and not on a static file signature. This research is however beyond the scope of this work.

6.3.2 Statically Analysed File Types Distribution

80.43% of the bot binaries successfully analysed were unsurprisingly PE’s (see Table 6.18). This
is unsurprising for three reasons, namely the majority of the bot binaries in the dataset were
classified as PE’s (Table 6.4). Secondly the static analysis system required a predictable PE file
layout to extract configuration information. Thirdly, DarkComet targets the Microsoft Windows
operating system, which uses the PE file format for the majority of executable files. As men-
tioned in Section 5.2.1 the Static Analysis module was also able to analyse PE files extracted
from ZIP and RAR archives. This allowed for the additional analysis of 1,818 compressed bot
binaries.

As shown in Table 6.18, the implementation accomplished the successful analysis of 49.49% of
the total number of Win32 EXE bot binaries within the dataset along with 44.79% of the RAR
and 32% of the ZIP files. Unexpectedly 50% of the JAR files within the dataset where also
successfully analysed by the Static Analysis module; this was due to the JAR file format being

83

Table 6.20: Statically analysed file type distribution, per version.

DC Version File Type Count %

dc-v51 Win32 EXE 33420 94.05

dc-v51 RAR 1456 4.10

dc-v51 DOS EXE 398 1.12

dc-v51 ZIP 251 0.71

dc-v51 JAR 4 0.01

dc-v51 Unknown 3 0.01

dc-v51 Win32 DLL 3 0.01
N = 35535

Table 6.21: Statically analysed file type distribution for version 3.x-5.0 bot binaries.

DC Version File Type Count %

dc-v3 Win32 EXE 4960 97.31

dc-v3 RAR 96 1.88

dc-v3 DOS EXE 26 0.51

dc-v3 ZIP 15 0.29
N = 5097

based on the ZIP file format5. The successfully analysed bot binaries which were unidentified
by the VT ”file” application as being either MS-DOS executables or RAR archives are listed in
Table 6.19.

Table 6.19: Unknown file types re-classified by the Linux file utility.

SHA256 File Type

9f6d1220fb86295d35f8e0191e485de29e48229d3e646819741a75149af0a534 MS-DOS executable

df4ac248ef978e097144c8ae440af28f99d4371f3bff56e33f0e9ffbc60fa5ab RAR archive data

d46372eb2735d18870d41347db728e9160eb3c7336b56a55faa20b48306b6e0a MS-DOS executable
Version 5.09 of the Linux file program was used to calculate these values

Between DarkComet versions dc-v3 bot binaries showed less file type diversity (Table 6.21)
than the dc-v51 bot binaries (Table 6.20). This could point to the popularity of dc-v51 Ta-
ble 6.17 or as anti-malware systems have evolved, the necessity to obfuscate bot binaries has
become a requirement for successful distribution and infection. This data point was not further
explored.

6.3.3 Statically Analysed First Seen Distribution

The increase in the number of successfully analysed bot binaries between 2013 and 2014 (see
Table 6.22) is congruent with the number analysed by VT in those years, see Figure 6.4. Also,
in line with a previous observation regarding the number of bot binaries presented for analysis
in 2014 by the VT system exceeding that of 2013 (see Section 6.2.4) the number of successfully
analysed bot binaries in 2014 will also outnumber that of 2013 were sample collection to have
continued.

5http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

84

Table 6.22: Statically analysed bot binaries per year, across all DarkComet versions.

Year Count %

2010 13 0.03

2011 879 2.16

2012 1247 3.07

2013 21138 52.02

2014 17346 42.69

Unknown 9 0.02
N = 40632

Table 6.23: Statically analysed bot binaries per year, per DarkComet version.

DC Version Year Count % DC Version Year Count %

dc-v3 2010 13 0.03 dc-v51 2010 0 0

dc-v3 2011 879 2.16 dc-v51 2011 0 0

dc-v3 2012 573 1.41 dc-v51 2012 674 1.66

dc-v3 2013 2400 5.91 dc-v51 2013 18738 46.12

dc-v3 2014 1232 3.03 dc-v51 2014 16114 39.66

dc-v3 Unknown 0 0 dc-v51 Unknown 9 0.02
N = 40632

Analysis of the number of DarkComet versions shows that versions classified as dc-v51 far out-
number that of dc-v3, see Table 6.23.

An examination of the VT First Seen dates for those bot binaries successfully analysed in 2012
(Table 6.24) and cross-referenced with the official DarkComet release schedule (see Table 3.1),
confirms the correct classification of DarkComet version 5.1 and later versions. As can be seen
in Table 6.24 no bot binaries were classified as being dc-v51 before March 2012.

Table 6.24 also shows the increasing popularity of the newer DarkComet version 5.1+ quickly
overtaking that of versions 5.0 and older in July of 2012. A review of the change logs, a record
of the changes implemented between software versions by the DarkComet author, shows that
version 5.1 received more bug fixes than 5.0 and the most of all versions of 5.x, see Table 6.25.
This could explain the quick progression of botmasters to the use of version 5.1 and later.

The oldest successfully analysed bot binary was first analysed by VT on 2010-11-22, which
according to its bot configuration layout classifies it as a dc-v3 bot binary. The oldest dc-v51
bot binary successfully analysed was analysed by VT on 2012-03-18. Comparing the First Seen
date of this bot binary with that of the DarkComet release schedule (Table 3.1) shows that it
was submitted one day following the release of DarkComet version 5.1.1.

6.3.4 C&C Servers per Bot Binary

It is possible to configure multiple C&C servers within a bot binary, thereby providing redun-
dancy should a server go offline. In total, of the 40,632 bot binaries successfully analysed, 24,333
unique C&C addresses were found with dc-v51 bot binaries accounting for 87.51% (21,294). By
comparison [30] discovered 180 botnet C&C’s , [1] 100, [78] 3,290, and [62] 15. The definition
used in this research of a unique C&C address is a distinct combination of DNS hostname or

85

Table 6.24: Statically analysed bot binaries first analysed by VirusTotal in 2012.

DC Version Year-Month Count % DC Version Year-Month Count %

dc-v3 2012-12 21 1.68 dc-v51 2012-12 69 5.53

dc-v3 2012-11 20 1.6 dc-v51 2012-11 85 6.82

dc-v3 2012-10 15 1.2 dc-v51 2012-10 95 7.62

dc-v3 2012-09 21 1.68 dc-v51 2012-09 95 7.62

dc-v3 2012-08 8 0.64 dc-v51 2012-08 85 6.82

dc-v3 2012-07 17 1.36 dc-v51 2012-07 67 5.37

dc-v3 2012-06 112 8.98 dc-v51 2012-06 63 5.05

dc-v3 2012-05 69 5.53 dc-v51 2012-05 68 5.45

dc-v3 2012-04 57 4.57 dc-v51 2012-04 31 2.49

dc-v3 2012-03 87 6.98 dc-v51 2012-03 16 1.28

dc-v3 2012-02 102 8.18 dc-v51 2012-02 0 0

dc-v3 2012-01 44 3.53 dc-v51 2012-01 0 0
N = 1247

Table 6.25: Bugfixes for DarkComet versions 5.0 and later.

DC Version Bugfixes

5 7

5.1 13

5.2 8

5.3 8

IP address and TCP port. Therefore a C&C DNS hostname ”www.example.com” utilising TCP
ports ”123” and ”456” would equate to two unique C&C addresses.

On average, a bot binary was configured with 1.96 C&C servers; dc-v3 bot binaries being con-
figured with slightly less at 1.68 and dc-v51 slightly more with 2.00. At a glance, this showed
that botmasters are concerned with keeping control of their botnets and go to some trouble to
establish at least some measure of redundancy. The highest number of C&C servers configured
for a single binary was that of a dc-v51 bot binary with 31. It would appear that this botmaster
had a high regard for C&C server redundancy.

6.3.5 C&C Hostname Analysis

A review of the ten most common DNS hostname and TCP port combinations presents us with
the table Table 6.26 with the majority making use of the ”no-ip.org” domain. This domain is
provided by a dynamic DNS service operated by the company ”Vitalwerks Internet Solutions,
LLC”6. Dynamic DNS services allow clients with constantly changing IP address, such as those
assigned to residential broadband connections, to have a static DNS hostname. This is essential
for botmasters wanting to keep control of their botnets; configuring the bot with a static C&C IP
address would result in the bots no longer being able to communicate with the C&C were the IP
address to change. Thus, the botmaster would lose control of their botnet. No-IP.com’s dynamic
DNS service is well known within malware circles due their offering of three free dynamic DNS
hostnames with very little identifying information required as well as the ability for botmasters

6http://www.noip.com/

86

Table 6.26: C&C servers with the highest number of DNS hostname and TCP Port combinations.

Hostname Combinations

universalserverrat.zapto.org 20

flyerpro.no-ip.org 14

sjukams001.zapto.org 14

flyertest.no-ip.org 13

jhg.no-ip.info 11

missiles.no-ip.org 11

thinder.no-ip.org 10

ghosts.no-ip.org 10

dashz1.no-ip.org 10

rathaacker.no-ip.biz 9

to hide their C&C servers due to the popularity of the service by legitimate users. However,
No-IP.com had 23 of its dynamic DNS domains seized and ”blackholed” by Microsoft as they
attempted to dismantle the Bladabindi-Jenxcus botnet [6].

An Internet search for the C&C DNS hostname ”jhg.no-ip.info” returns a result in court docu-
ments presented during the legal case Microsoft Corporation v. Mutairi et al [51]. A review of
all the C&C DNS hostnames in the dataset reveals that 2,421 are also present in Appendix A
of [51]7. As the case was brought to dismantle the Bladabindi-Jenxcus botnet this could point
to botmasters leveraging their existing infrastructure to create additional botnets, perhaps as a
means to offset the costs associated with their C&C server infrastructure.

24,333 unique C&C addresses were extracted by the Static Analysis module of which 5,741 were
IP addresses. Of these, 2,262 are considered reserved and not for use on the public Internet8 and
six were erroneous (i.e. ”99.999.1.98”). 726 of the Reserved IP addresses were configured in the
127.0.0.0/8 IP address range pointing to testing bot binaries.

18,592 C&C addresses were DNS hostnames. 16,229 were unique and 69 were incorrectly for-
matted (i.e zackownsall) and therefore unusable. The ten most common Second Level Domain
(SLD)’s, that is the ”example.com” in the DNS hostname of ”www.example.com”, along with
their respective count of C&C DNS hostnames, the percentage of total second level domains,
and the DNS service provider is available in Table 6.27.

”Vitalwerks Internet Solutions, LLC” is the service provider for 9 of the top 10 most common
SLD’s in the dataset with a total of 5,670 (94.51%) across the entire dataset of 5,999 unique
SLD’s. This is the company which operates the No-IP.com dynamic DNS server. Of the 24,333
successfully analysed bot binaries 9,837 (40.43%) were configured with a C&C DNS hostname
which made use of a SLD provided by ”Vitalwerks Internet Solutions, LLC”.

6.3.6 C&C TCP Port Analysis

The default DarkComet TCP port of 1604 was configured for 12,771 (52.48%) of the analysed
bot binaries, see Table 6.28. [78] noted that 36.1% of the IRC-based C&C servers analysed made

7http://s3.amazonaws.com/s3.documentcloud.org/documents/1211424/appendix-a-to-second-amended-
order.pdf

8http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml

87

Table 6.27: Top 10 Second Level Domains.

Rank Domain Count % DNS Service Provider

1 no-ip.biz. 2368 39.47 Vitalwerks Internet Solutions, LLC

2 no-ip.org. 1373 22.89 Vitalwerks Internet Solutions, LLC

3 zapto.org. 1131 18.85 Vitalwerks Internet Solutions, LLC

4 no-ip.info. 262 4.37 Vitalwerks Internet Solutions, LLC

5 noip.me. 168 2.80 Vitalwerks Internet Solutions, LLC

6 sytes.net. 92 1.53 Vitalwerks Internet Solutions, LLC

7 hopto.org. 54 0.90 Vitalwerks Internet Solutions, LLC

8 servegame.com. 48 0.80 Vitalwerks Internet Solutions, LLC

9 3322.org. 23 0.38 Bitcomm ltd.

10 myftp.org. 23 0.38 Vitalwerks Internet Solutions, LLC
N=5999

Table 6.28: Top 10 C&C server ports.

Rank Port Count %

1 1604 12771 52.48

2 200 1125 4.62

3 81 806 3.31

4 100 606 2.49

5 80 442 1.82

6 1500 383 1.57

7 1605 322 1.32

8 82 270 1.11

9 1337 205 0.84

10 25565 204 0.84
N = 24333

use of the default IRC port (TCP 6667) for communication.

Botmasters will attempt to hide botnet communications and potentially circumvent firewall rules
through configuring the C&C to listen on ports used by popular services such as HTTP and
HTTPS. These popular ports are registered with Internet Assigned Numbers Authority (IANA)
and are typically in the 0-1024 TCP port range. The most commonly configured registered TCP
port used by botmasters is 200 with 4.62%, see Table 6.29. The significance of TCP port 200 is
not known.

6.3.7 C&C Communication Encryption Key Analysis

As previously stated in Section 3.4, DarkComet makes use of two RC4-256 encryption keys. One
is used to encrypt the bot configuration key-value pairs within the bot binary and the other
to encrypt communications between the bot and the C&C (Section 3.5). The communication
encryption key is a combination of the static, version specific key and a password configured
at bot binary creation by the botmaster. By default the communication key is not configured
with communication encryption relying solely on the configuration key. However, if the use of a
communication key is enabled but not configured the default is ”0123456789”, which results in a

88

Table 6.29: Top 10 IANA registered C&C ports.

Rank TCP Port Service Name Count % C&C’s

1 200 src 1125 4.62 1112

2 81 Unassigned 806 3.31 770

3 100 Unassigned 606 2.49 586

4 80 http 442 1.82 428

5 82 xfer 270 1.11 251

6 999 garcon 75 0.31 66

7 443 https 58 0.24 56

8 666 mdqs 52 0.21 47

9 20 ftp-data 49 0.20 44

10 101 hostname 48 0.20 47

Table 6.30: Top 10 DarkComet communication encryption keys.

Rank Encryption Key Count %

1 #KCMDDC51#-890 18732 76.98

2 #KCMDDC2#-890 1453 5.97

3 #KCMDDC4#-890 410 1.68

4 #KCMDDC5#-890 290 1.19

5 #KCMDDC51#-8900123456789 219 0.90

6 #KCMDDC42F#-890 152 0.62

7 #KCMDDC51#-890123456 128 0.53

8 #KCMDDC42#-890 84 0.35

9 #KCMDDC51#-890123 71 0.29

10 #KCMDDC51#-89012345 38 0.16

communication encryption key of ”#KCMDDC51#-8900123456789”. If enabled and configured
the communication key can be any arbitrary string selected by the botmaster. With this in mind,
a review of the ten most common communication encryption keys are presented in Table 6.30.
The most common encryption communication key was ”#KCMDDC51#-890” (76.98%), which
is the default key used in DarkComet versions 5.1 and later.

A review of the number of C&C’s utilising the default communication encryption keys shows
that a total of 21,121 (86.80%) of the total C&C servers in the dataset were configured with
these keys, see Table 6.31. Of those botmasters who did enable a communication encryption key
274 (1.13%) did not changed the key from the default of ”0123456789”, see Table 6.32.

6.3.8 C&C Bot Configuration Analysis

Analysis of the most common configuration options set shows that in 93.51% of the analysed bot
binaries the option to have a victims keystrokes logged was enabled and the built-in Microsoft
Windows firewall was adjusted to allow botnet communication, see Table 6.33. 64.49% of the
bot binaries were configured with the ”install” configuration value set, which would result in
the bot software being added to specific Microsoft Windows registry keys allowing the infection
to survive a reboot of the victim computer. Were this setting not configured a reboot would
clear the infection and re-infection would need to occur. The Static Analysis module used the

89

Table 6.31: Bot binaries without a DarkComet communication encryption key configured.

Encryption Key Count %

#KCMDDC51#-890 18732 76.98

#KCMDDC2#-890 1453 5.97

#KCMDDC4#-890 410 1.68

#KCMDDC5#-890 290 1.19

#KCMDDC42F#-890 152 0.62

#KCMDDC42#-890 84 0.35
N = 24333

Table 6.32: Bot binaries employing the default DarkComet communication encryption keys.

Encryption Key Count %

#KCMDDC51#-8900123456789 219 0.90

#KCMDDC2#-8900123456789 24 0.10

#KCMDDC4#-8900123456789 17 0.07

#KCMDDC5#-8900123456789 6 0.02

#KCMDDC42#-8900123456789 4 0.02

#KCMDDC42F#-8900123456789 4 0.02
N = 24333

value of the ”netdata” configuration key as its success criteria, by checking the value complied
with a regular expression, thus explaining the value of 100%. Also, due to the configuration
encryption key being used as the default value for ”pwd”, for the communication encryption key,
the 100% value is also expected. Ignoring the ’netdata”, ”pwd”, ”mutex”, ”gencode”, and ”sid”
configuration settings, which are all set by default, it becomes apparent that very few botmasters
create highly configured bot binaries. There could be a number of reasons for this including a
lack of understanding as to the effect of configuration setting on the victim computer, a lack of
technical skills by the botmaster, or it could point to the number of superfluous configuration
options within the DarkComet software not required for successful infection or control of a victim
computer.

Table 6.33: The 10 most commonly configured DarkComet configuration settings.

Configuration Key Count %

netdata 24333 100.00

pwd 24333 100.00

mutex 24321 99.95

gencode 24317 99.93

sid 24122 99.13

offlinek 22755 93.51

fwb 19601 80.55

combopath 15693 64.49

install 15688 64.47

keyname 15660 64.36
N = 24333

90

Table 6.34: The 11 C&C servers which were live during the entire infiltration period of 27 days.

No. C&C Hostname TCP Port DC version

1 adn2013hack.no-ip.org 81 dc-v51

2 ashqi.zapto.org 2233 dc-v51

3 cashmoney66612.no-ip.biz 2000 dc-v51

4 mandoo.no-ip.org 1981 dc-v51

5 maplehaxx.no-ip.biz 1607 dc-v3

6 mehmet.zapto.org 1604 dc-v51

7 rk95.no-ip.biz 91 dc-v51

8 steamwarz1.no-ip.org 82 dc-v51

9 toja.no-ip.biz 4430 dc-v51

10 withoutanet.no-ip.biz 4201 dc-v51

11 zakaria95.no-ip.biz 200 dc-v51

6.4 C&C Liveness Module Analysis

Of the 24,333 distinct C&C servers in the dataset the C&C Liveness module confirmed that
1,329 (5.46%) of the servers were at one time live during the infiltration period. The infiltration
period commenced on 2014-05-10 and ended on 2014-06-0, running for approximately 27 days.
This number is much lower than those cited by Freiling at al. [30] who found that 30% of the
botnet C&C extracted during their research were live. Of these live C&C servers 33 were of type
dc-v3 and the remaining 1,296 of type dc-v51.

Eleven C&C servers were found to be live for the entire duration of the analysis period and 441
C&Cs responded only once to the liveness testing, with the average lifetime of a C&C server
being 9.70 days. This is again lower than those witnessed for IRC-based botnets by [1] and [78]
which were 47 and 54 days respectively. Referring to Table 6.34 it can be seen that only a
single dc-v3 C&C server (number 5) was live during the infiltration period with the remainder
being comprised of dc-v51 servers. Why a botmaster would make use of an old version of the
DarkComet software can only be guessed.

An Internet search for the term ”maplehaxx”, based on the C&C DNS hostname, results in
a question posed by a user, with the username of ”maplehaxx”, on a known hacking forum9

regarding the setup and configuration of DarkComet C&Cs and bot binaries. In these forum
posts the user confirms that he/she makes use of DarkComet version 4.0, which corresponds
with the extracted information, and states that due to configuration mistakes he/she had lost
access to 350 bots. If the users statements are true it would appear that a botmaster with little
technical knowledge is still able to infect hundreds of victim computers.

Six of the C&C DNS hostnames in Table 6.34 (1, 2, 3, 4, 5, 9) also feature in the Microsoft
Corporation v/ Mutairi et al court papers. This again demonstrated that botmasters may
leverage their existing infrastructure to create more than one botnet and that these C&C servers
are long-lived and their existence is well known within anti-malware circles.

9http://www.hackforums.net/printthread.php?tid=2035892. Registration required

91

Figure 6.5: Geoplotting of last known C&C IP addresses.

6.4.1 C&C Geographic Dispersion

The IP addresses associated with each C&C server DNS domain was recorded and included
changes to these IP address. For each IP address the associated country, organisation or ISP,
and ASN was recorded. A total of 5,365 IP address changes were observed across all the live
C&C servers during the infiltration period, which equates to an average of 5.11 IP changes per
C&C. The C&C with the highest number of IP addresses changes had 52 changes occur during
the period 2014-05-18 and 2014-06-06, the first and last date the framework confirmed the C&C
was live. The C&C was located in Pakistan with all IP addresses used being assigned to the
ISP ”Pakistan Telecommunication Company Limited”. The C&C never received the same IP
address twice during the infiltration period. This illustrates the necessity for botmasters, who are
assigned dynamic IP addresses by their ISP, to make use of dynamic DNS services to maintain
control of their botnets.

Through plotting the last observed IP address for each C&C on a world map the output in Fig-
ure 6.5 is provided. The conversion from IP address to country was performed using the MaxMind
GeoLite Country database10. According to work performed by the University of California, San
Diego [37] the MaxMind database provides 99.1% accuracy at a country level.

The countries with the highest number of C&C servers was the United States with 160 (12.04%),
Turkey with 106 (7.98%) and Russia with 79 (5.94%) (see Table 6.35) across the 79 countries
observed with live C&C servers. The USA was also reported as being the country with the
highest number of C&C servers by [78]. The ten countries with the highest number of C&C
servers accounted for 48.46% of all the live C&C servers observed. In terms of percentage of the
total number of Internet connected hosts for a country 26.92% of Iraq’s 26 Internet connected

10http://dev.maxmind.com/geoip/geoip2/geolite2/

92

Table 6.35: The 10 countries with the highest number of live DarkComet C&C servers.

Country Count %

US 160 12.04

TR 106 7.98

RU 79 5.94

FR 69 5.19

GB 63 4.74

DE 38 2.86

NL 37 2.78

BR 34 2.56

RO 34 2.56

UA 24 1.81
N = 751

hosts, 2.26% of Tunisia’s 576 hosts, and 2.16% of Syria’s 416 hosts are DarkComet C&C servers11.
In contrast, those countries with the highest number of C&C servers namely the USA, Turkey
and Russia have 0.000032%, 0.001494% and 0.000531% DarkComet C&C servers as a percentage
of all Internet connected hosts, respectively. This illustrates the points that countries with large
numbers of Internet connected hosts could potentially have large numbers of DarkComet C&C
servers, and simply publishing the number of C&C servers per country without taking into
consideration the number of Internet connected hosts can skew opinions.

6.5 C&C Interaction Module Analysis

Through exploiting the QUICKUP vulnerability to download the comet.db database from Dark-
Comet C&C servers and parsing the data contained within, it was possible to gather extensive
bot information from 751 (56.50%) of the 1,329 live C&C servers tracked by the Infiltration
System. The outstanding 578 live C&C servers were running software versions earlier than ver-
sion 5 and therefore not vulnerable, presented errors which appeared specific to that DarkComet
installation, or in the majority of cases were not online for the duration of the comet.db file
download.

Using the UUID generated by each DarkComet bot binary as a unique identifier it was possible
to gather the following information from the 109,585 victims observed:

• The public IP address of the victim computer

• The private IP address of the victim computer

• The DNS hostname of the victim computer

• The username of the user infected through the bot binary

• The operating system of the victim computer

• The directory within which the bot binary was executed or installed

11Internet statistics taken from the Central Intelligence Agency (CIA) World Factbook12, which is produced
by the American government agency and contains summary information on the ”history, people, government,
economy, geography, communications, transportation, military, and transnational issues for 267 world entities”.

93

Figure 6.6: Geoplotting of last known victim IP addresses.

The UUID remains constant across C&C servers such that a victim UUID in one botnet would
be the same victim in another botnet.

Additionally, by using the public IP addressing information, the country, organisation or ISP, and
ASN for each victim was determined. All of which was saved in the framework datastore.

6.5.1 Victim Geogrpahic Distribution

Geoplotting the public IP address of the victims provides Figure 6.6. France had the most
victims with 10,369 (9.46%) of the total victims observed, followed by the USA’s 7,615 victims,
and Romania’s 7,614 victims. It was observed that victims were spread across 210 different
countries and 6 continents. The number of victim countries was in line with that observed
by [36], however the countries with the highest number of victims they observed were USA,
Uruguay, and Germany. [62] lists France as having only the fourth highest number of victims,
after Italy, Turkey and Morocco. This could point to regional or country specific botnet software
preferences, however this was out of scope for this research.

6.5.2 Victim Organisation Distribution

In terms of organisations, that is the entity to which the public IP of the victim has been reg-
istered, Turk Telecom (ASN 9121) (a Turkish telecommunications company) had the highest
number of victims with 4,036. This was followed by Free SAS (ASN 12322), a French telecom-
munications company, with 3,520 victims and RCS & RDS Residential (ASN 8708), a Romanian
telecommunications and satellite television company, with 3,329 victims. Those organisations
with the ten highest victim counts are presented in Table 6.36 along with the number of IP

94

Table 6.36: The 10 organisations with the highest number of DarkComet victims.

Organisation Victims ASN Country Hosts* %

Turk Telekom 4,036 9121 TR 6,934,272 0.06

Free SAS 3,520 12322 FR 11,116,544 0.03

RCS & RDS Residential 3,329 8708 RO 2,181,376 0.15

Orange 2,946 3215 FR 15,396,608 0.02

EarthLink Iraq 2,029 50710 IQ 295,936 0.69

E-Plus Mobilfunk GmbH 1,988 12638 DE 1,754,112 0.11

Comcast Cable 1,558 7922 US 71,172,864 0.00

SFR 1,529 15557 FR 11,769,344 0.01

ROMTelecom S.A. 1,471 9050 RO 1,547,008 0.1

Deutsche Telekom AG 1,354 3320 DE 34,392,832 0.00
N = 109585

* Information taken from http://bgp.he.net/

addresses advertised by their respective ASN along with the percentage of victims to advertised
IP addresses. Turk Telecom had the highest number of victims however, as a percentage of
total IP population it places 6th with 0.06%. EarthLink Iraq with the 6th highest number of
victims had the highest percentage of victims with 0.69%. This makes Iraq the country with the
highest population percentages for both C&C’s (Section 5.3.1) and victims resulting in it being
the country with the most DarkComet activity across the dataset.

6.5.3 Common C&C Ports

Reviewing the list of TCP ports used when victims communicate with their respective C&C
servers shows that the default TCP port of 1604 was used in 53,54% of cases, followed by TCP
port 200 (4,03%), and 81 (3,61%) across the 250 distinct ports witnessed. This ties up with the
analysis of the most common C&C ports in Table 6.28 and Table 6.29 as well as observations
by [78] that 36.1% of the botnets they researched used the default IRC TCP port.

6.5.4 Botnet Size

Using the number of C&C servers observed (751) and the number of victims for which data was
gathered (109,585), the average DarkComet botnet contains 145.91 victims. Table 6.37 provides
an overview of victim ranges by botnet. The majority of the botnets observed consist of less than
50 (46.07%) or between 101 and 1000 (41.01%) victims. These ranges accounted for 87.08% of
the total number of botnets. This indicates that whilst the majority of botnets contained very
few victims, less than 50, there were a significant number that contained more than the average
of 145.91. In [78] the majority of the IRC-based botnets observed consisted of between 501 and
2,000 victims with 34.45%.

The largest botnet observed had its C&C server located in France and contained a total of 7,742
bots. Of these, 4,744 bots were located in France, 613 in Belgium, 387 in Algeria, and the
remainder spread across 123 another countries. This researcher theorises that the botmaster
focused on French speaking victims due to French being an official language of Belgium and
Algeria being the country with the second highest number of French speakers in the world. Of

95

Table 6.37: Count of DarkComet botnets by number of victims.

Victims C&Cs

1-10 154

11-50 192

51-100 66

101-200 160

201-1000 148

1001-5000 29

5001+ 2

Table 6.38: C&C and victim countries of the 10 largest DarkComet botnets.

C&C Victim Country %

France France 61.28

Netherlands Romania 16.51

Moldova India 27.63

France USA 10.56

Romania Romania 77.26

Iraq Iraq 80.31

France Germany 66.60

Greece Italy 11.31

Greece Italy 11.31

USA USA 42.20

the ten largest botnets, four had C&C servers hosted in the same country as their victims as
show in Table 6.38.

6.5.5 Victim Operating System

The most common victim operating systems observed were Microsoft Windows 7 with 66.16%
of the total victims and Microsoft Windows XP with 17.04%. This was unsurprising considering
that Windows 7 accounts for approximately 50.84% of the workstation operating system market
share and Windows XP approximately 24.34% [54]. It was not possible for DarkComet, and
inturn this research, to determine the operating system for 14.12% of the victims.

6.5.6 Victim Username

Microsoft Windows usernames are case-insensitive, therefore ”username” and ”Username” would
both equate to the same thing. The case-study observed 51,804 different, case-sensitive usernames
across the victim dataset. The most common being ”User” (5,804), ”Administrator” (3,806),
and ”Admin” (2,697). Microsoft supports localised Administrator usernames for 8 languages
namely Finnish, French, Hungarian, Portugues (Brazil), Portugese (Portugal), Russian, Spanish
and Swedish as well as support for 99 different language dependant ”Display Names”13. Taking

13http://social.technet.microsoft.com/wiki/contents/articles/13813.localized-names-for-administrator-account-
in-windows.aspx

96

this into consideration a total of 5,115 administrator user accounts were found to have been
infected within the dataset. As this account is awarded the highest level of user privilege by
the Windows operating system a DarkComet server process running as an Administrator user in
turn allows a DarkComet botmaster the highest level of user privilege on the victim computer.
This could result in complete control over the computer and any data stored therein.

6.6 Summary

In this chapter, analysis of the information generated by the case-study implementation of the
proposed framework was presented. In total 83,175 bot binaries were acquired and analysed. This
far exceeds the number of bot binaries collected by any of the frameworks reviewed in Section 2.4.
99.5% were identified as being members of the Backdoor:Win32/Fynloski.A malware family by
Windows Defender. The bot binaries within the dataset had detection rate of between 2.05%
and 92.80% by the anti-malware solutions utilised by the VT system with a consensus reached on
only 14 samples – that is a sample being regarded as malicious by all the anti-malware solutions
employed. In terms of file type 93.23% of the bot binaries were identified as being ”Win32 EXE”
and 5.86% were archive file types (for example ZIP, RAR, GZIP). Unsurprisingly, as DarkComet
is intended to infect computers running the Windows operating system, which makes extensive
use of the ”Win32 EXE” file format for executables. The largest bot binary had a file size
of 104,857,600 bytes in size. DarkComet bot binaries are commonly disguised as commercial
software and games in an effort to trick a potential victim into infecting their computer.

The popularity of DarkComet took off in 2013 with a 12 fold increase over bot binaries sub-
missions to VT in 2012. This upward trend was set to continue in 2014 with 29,760 bot binary
submissions within the first six months. Through utilising CTPH as a means to group similarly
configured bot binaries, it was possible to determine that 4.28% had a 99-100% similarity with
a minimal or default configured bot binary. This could point to a number of testing bot binaries
within the dataset.

Due to time constraints only the Static Analysis module was implemented within the Sample
Analysis system. Despite only employing static analysis methods to extract the DarkComet bot
configuration 48.85% of the bot binaries were successfully analysed. This led to the extraction
of data for 24,333 unique C&C servers of which 16,229 bot binaries were configured with DNS
hostnames and the remaining 5,741 with IP addresses. Of those bot binaries configured with DNS
domains 94.51% were configured with SLD’s operated by No-IP.com; a dynamic DNS hostname
provider. This provider and Microsoft were embroiled in a legal dispute after the operating
system vendor blackholed all DNS domains belonging to No-IP.com in an attempt to dismantle
another botnet. 52.48% of the bot binaries were configured with the default DarkComet TCP
port of 1604 and 86.80%, were configured with no encryption key, and 1.13% with the default
encryption key. This showed that a significant number of DarkComet botmasters do not bother
with changing default configuration values.

5.46% of the extracted C&C servers were found live during the infiltration period which lasted
27 days. The average lifespan of a DarkComet C&C server was measured as 9.70 days. The
countries hosting the highest numbers of live C&C servers were the USA with 12.04%, Turkey
with 7.98%, and Russia with 5.94%. Iraq, Tunisia, and Syria had the highest ratio of DarkComet
C&C’s to Internet connected hosts.

97

Through leveraging and refining the QUICKUP vulnerability it was possible to extract infor-
mation for 109,585 victim computers across 210 countries. France had the highest number of
DarkComet victims with 9.46%, trailed by USA and Russia both with 6.94%. The majority
of botnets were between 1-50 (46.07%) and 101-1000 (41.01%) victims in size with the largest
botnet comprising 7,742 bots. The C&C for this botnet was hosted in France with 74.19% of the
bots identified as being located in France, Belgium, and Algeria; all countries with large popula-
tions of French speakers. This indicates that the botmaster targeted French speaking computer
users.

98

7
Conclusion

The goal of this research was to design an automated botnet analysis framework which avoids
the shortcomings of existing frameworks, incorporated modern framework design requirements,
is modular, botnet agnostics, and required limited resources. This required that a robust
methodology be developed, which could be used to determine the success to which this goal
was achieved.

7.1 Research Methodology

The research methodology consisted of three components 1) a review of existing automated bonet
analysis frameworks, 2) a review of design requirements for a modern botnet analysis framework
and, 3) the use of a case-study to determine the performance of the proposed framework when
utilised in actual botnet research.

7.1.1 Existing Framework Reviews

A total of nine existing frameworks where reviewed; the majority originating from previous
academic research. A table summarising the outcome of the review is provided in Table 2.1.

The shortcomings of these frameworks was discussed in Section 2.5 and is summarised below.
This information was used to improve upon existing framework through avoiding their short-
comings.

• Support for specific communication protocols or botnet types or families

• Limited or no support for encrypted or custom communication protocols

• The collection of malware samples requiring automated infection

99

7.1.2 Framework Design Considerations

The design considerations for a modern botnet analysis framework were incorporated with a
summary of their inclusion into the proposed framework presented below.

1. Stealth: Stealth was maintained through the design and implementation decisions high-
lighted below:

(a) C&C Liveness and Interaction modules: The network source of the framework
is hidden through the use of TOR for all interactions with a botnet C&C server. The
TOR network was designed to provide anonymity to its users, allowing for the masking
of the framework’s source IP address. In addition, TOR allows for the specification
of the ”exit node” used providing the ability to choose which country the framework
would appear to originate from. The use of TOR was incorporated into the C&C
Liveness (Section 5.3.1 and C&C Interaction (Section 5.3.2) modules, as these were
the only two modules which made contact with C&C servers.

(b) C&C Interaction module: Through refinement of the QUICKUP vulnerability,
discovered by [20], it was possible to exploit the vulnerability without the DarkComet
C&C server software recording the interaction. This allowed for the C&C Interac-
tion module to perform its duties with significantly lowered concerns of detection
by the botmaster. Detailed information regarding the refinements can be found in
Section 5.3.2.

2. Scalability: The framework makes use of the Python scripting language for all modules.
It was chosen due to its low resource usage requirements and a plethora of suitable libraries.
Additionally the modules within the framework were designed for scalability, as follows:

(a) Message queue: Through the use of an event-driven architecture, whereby messages
are passed between modules as their participation is required as opposed to scheduled,
it is possible to ensure that only those modules required at that specific time made use
of available resources. The message queue also allowed for the distribution of modules
to separate computers thereby allowing for the distribution of tasks. This was realised
during the case-study by the fact that the initial Internet connection was insufficient
for large, latency sensitive communications, and large downloads from C&C’s with
short-lived availability. By utilising the distribution capabilities of the framework it
was possible to ”offload” all C&C server communication tasks to a host located in
The Netherlands. All other systems operated within the initial analysis environment
in South Africa. The message queue also allows developers interested in extending the
framework only having to accommodate specific messages of interest, and does not
require an understanding of all messages within the framework. Please see Section 4.6
for more information.

(b) Sample Analysis System: First subjecting collected bot binaries to an automated
static analysis module (Section 5.2.1) greatly reduced the number of bot binaries re-
quiring dynamic analysis. This reduced analysis time and also the resources required.
A bot binary presented to the static analysis module would require less than a second
of analysis time to extract the required information, whereas the dynamic analysis
module utilised a two minute execution timeout, the de facto default time. Therefore,
the static analysis module provided a significant resource advantage over the dynamic
analysis module.

100

(c) Dynamically increasing the number of concurrent modules employed: By
default, a single instance of each module was required for normal operation of the
framework. However, it was possible to have multiple modules execute simultaneously
to decrease processing time. Employing three static analysis workers to re-analyse all
the collected bot binaries, as opposed to the standard one worker which was used
during normal operation, re-analysis could occur in just one hour. This ”ability”
to employ additional modules for analysis and data collection was also used to save
time collecting metadata information for bot binaries which were collected before
development of the module was completed. In addition, employing multiple C&C
Liveness and C&C Interaction modules allowed for the monitoring of multiple botnets
concurrently from a single analysis computer.

3. Sample collection: During the case-study VT, arguably the largest online malware repos-
itory, was used for sample collection allowing for 83,175 unique bot binaries for analysis.

4. Anti-debugging: Due to the potential for the static analysis module to be able to extract
botnet information without requiring a debugger or executing the bot binary, some anti-
analysis methods were circumvented. However, successful bot configuration extraction
required that the bot binary made use of a predictable layout. This proved to be less of
a problem than first anticipated; it was possible to analyse and extract the DarkComet
configuration information from 48.85% of the collected bot binaries. Section 5.2.1 contains
additional information.

5. Protocol support: Through the pairing of an analysed bot binary with its corresponding
infiltration module, it is possible to support a large number of different botnet protocols.
The case-study required that the Liveness and Quickup modules successfully communicate
with the C&C servers through support for the custom, encrypted DarkComet communica-
tion protocol. By extending the framework with an understanding of a botnets command
grammar support for an almost infinite number of botnet families is possible.

The modular framework consisted of a number of disparate systems with intra-system commu-
nication being facilitated through a centralised message queue and a shared relational database
(Chapter 4). The major systems comprising the framework were:

• Sample Collection System: This system was responsible for the collection of both
bot binaries and metadata and as such was the entry point for all bot binaries entering
the framework. This system comprised the Sample Acquisition module (Section 4.3.1),
responsible for the acquisition of analysis samples, and the Sample Metadata Collection
module (Section 4.3.2), which gathered metadata information for all acquired bot binaries.

• Sample Analysis System: The Sample Analysis system comprises two modules, namely
the Static (Section 4.4.1) and Dynamic Analysis (Section 4.4.2) modules. As their names
suggest it was the intention of this system to subject bot binaries to static analysis and/or
dynamic analysis methods. The goal, to extract the botnet configuration information from
a bot binary. Unfortunately, due to time constraints it was not possible to fully implement
the Dynamic Analysis module, however a proof of concept was conducted.

• Infiltration System: The infiltration system was responsible for all interactions between
the framework and botnet C&C servers. It comprised two modules the C&C Liveness mod-
ule, used to determine whether a botnet C&C server was online and accepting commands,
and the C&C Interaction module, which would interact with the C&C server to extract

101

information.

• Message Queue: The message queue was used for intra-system event and output com-
munication. Once a preceding system had completed its processing subsequent systems
were informed so that their analysis could occur.

7.2 Case-study Results

To determine the feasibility and success of the proposed framework bot binaries belonging to the
DarkComet RAT family of malware would be analysed by the framework. The success of the
framework would depend on the amount of information extracted from the collected bot binaries.
The case-study was fully operational for almost a month, 27 days in total, between 10 May 2014
and 6 June 2014.

The Sample Acquisition module (Section 5.1.1) successfully downloaded 83,175 bot binaries,
consuming 81,126,308 bytes of HDD space; this far exceeded initial estimations. The framework
was redesigned from being schedule driven to event-driven which required the implementation
of the intra-system message queue. The Sample Collection system utilised the VT private API
to search for malware samples identified as members of the Fynloski family by the Microsoft
anti-virus software Windows Defender, employed by the VT analysis systems.

The Metadata Collection module (Section 5.1.2) downloaded metadata information for all
the bot binaries; utilising analysis reports from VT. These reports included information such as
submission filenames, malware family, file type and size, first and last analysis dates, number of
submissions, compilation timestamp, unique submission sources, and the ”packer” or ”crypter”
identified. Additionally, the module also computed the CTPH for each bot binary, allowing for
the clustering of bot binaries even though configuration differences existed. Due to the high
number of new DarkComet bot binaries being submitted to VT, and therefore analysed by the
framework, bot binary collection was halted on the 6th June. This was done to provide the re-
searcher with the necessary time to conduct a thorough analysis and document the results.

The Static Analysis module (Section 5.2.1) was able to successfully extract the embedded
DarkComet bot configuration from 40,632 bot binaries. This provided configuration information
for 24,333 distinct Command and Control servers. Extracted information included the C&C
server DNS hostname or IP address, TCP port and DarkComet communication encryption key.
The successful processing of this 48.85% of bot binaries by the static analysis system illustrates
that whilst a number of botmasters make use of obfuscation techniques and technologies almost
half of the samples collected do not. Botmasters, on average, begin adopting updated versions of
the software within days of a new version release. However, some appear to prefer older versions
of the software and do not upgrade. The most popular versions of DarkComet used were 5.1+,
5.0 and 4.0. In 86.80% of cases a communication encryption key was not configured by the
botmaster with the 1.13% of those that did making use of the default key of ”0123456789”.
52.48% of DarkComet Command and Control servers operated on the default TCP port of
1604 followed by TCP port 200 with 4.62% and TCP port 81 with 3.31%. Initial analysis of
the metadata information collected prompted for the Static Analysis module to support the
decompression and extraction of PE files from within RAR and ZIP archives, which accounted
for 4.17% and 1% of all bot binaries respectively. Whilst the majority of the systems marked

102

for development were successfully implemented, due to time constraints the Dynamic Analysis
module was not. A proof of concept was designed and initial testing completed but it’s inclusion
into the Sample Analysis system was unfortunately not realised.

The C&C Liveness module (Section 5.3.1), which forms part of the Infiltration system (Sec-
tion 5.3), was able to confirm that 1,329 Command and Control servers were online, responsive
and willing to accept communication from DarkComet infected computers. These C&C servers
were communicated with during the infiltration period of 10 May 2014 to 6 June 2014. This
allowed for the collection of information pertaining to the C&C server’s IP address where DNS
domain names were configured, the country within which the C&C resides, and the ISP used
along with its ASN. Analysis of this information revealed that a number of the C&C servers made
use of ISPs which provide dynamic IP addresses to their clients; typically associated with resi-
dential broadband solutions. The most popular of which was No-IP.com. C&C servers changed
IP address a total of 5,365 times during the infiltration period with the highest number of IP
address changes being 52 for a single Pakistan-based C&C server. The majority of C&C servers
were located in the USA, Turkey and Russia. Iraq had the highest number of Command and
Control servers to Internet connected hosts with 26.92%. Whilst the number of DarkComet bot
binaries analysed during this research period is by no means representative of all DarkComet bot
binaries released the number of computers recruited into DarkComet botnets is staggering.

The C&C Interaction module (Section 5.3.2) employed a refined implementation of the
QUICKUP exploit and was able to collect information on 109,585 bots across the 751 live C&C
servers. The largest RAT network observed had 7,742 unique victims, accounting for 4.5% of
the total number of victims observed. The average number of bots in a DarkComet botnet was
145.91 however the majority of the botnets contained between 1 and 50 and between 101 and
1000 victims. The most commonly exploited operating systems were Microsoft Windows 7 and
Windows XP. In 5,115 instances the Administrator account had been compromised on the victim
host, providing the botmaster with the highest level of user access to these infected computers.
The results made available by the case-study illustrate that even without advanced obfuscation
techniques, which could allow DarkComet bot binaries to bypass anti-malware detection, it is
still possible to infect thousands of hosts with simple malware.

A by-product of the research is the expansion of public knowledge relating to the key-value
configuration pairs embedded within DarkComet bot binaries. Prior to this research details for
a subset of the total configuration key-value pairs was available and this research required, and
now makes public, a full listing of all the DarkComet configuration keys available (Appendix B).
Additionally, to comply with the requirements to maintain stealth and not raise the suspicions of
botmasters, this research provides refinements to the QUICKUP exploit such that exploitation
does not cause entries to be created in DarkComet C&C log files, requires less interaction with
the C&C than previously thought, and allows for the downloading of any size file from the C&C
server (Section 5.3.2).

7.3 Proposed Framework Shortcomings

Design pitfalls were realised during the development of the framework. This included that some
of the tables within the relational database were tailored to a single malware family, making
it unsuitable for the support of multiple malware families and being botnet agnostic. Using
information released by Arbor Networks, on their design of the Bladerunner malware analysis

103

system [25], a key-value store may have been better suited to hold configuration information. This
would allow the data to be stored in an unstructured format thereby removing the requirement
for a set table structure. Future versions of the framework would require that this be further
investigated.

7.4 Future Work

The implementation of the Dynamic Analysis module would provide dynamic analysis capabil-
ities to the framework potentially allowing for the analysis of obfuscated bot binaries. This
module would incorporate both automated behavioural analysis, by employing malware sandbox
technologies, and memory analysis techniques.

Utilising the proposed framework in the study of other botnet families would be an obvious
extension of this research. This could present additional design shortcomings which could be
used to improve the robustness of the framework.

104

References

[1] Abu Rajab, M., Zarfoss, J., Monrose, F., and Terzis, A. A multifaceted approach
to understanding the botnet phenomenon. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement (New York, NY, USA, 2006), IMC ’06, ACM, pp. 41–
52.

[2] Aylward, L. Malware Analysis - Dark Comet RAT. http://www.contextis.com/

research/blog/malware-analysis-dark-comet-rat/, Nov 2011. Retrieved 2015-02-22.

[3] Bacher, P., Holz, T., Kotter, M., and Wicherski, G. Know your Enemy : Tracking
Botnets. https://www.honeynet.org/papers/bots, October 2008. Retrieved 2015-02-22.

[4] Bayer, U., Kruegel, C., and Kirda, E. TTAnalyze: A tool for analyzing malware.
Master’s thesis, Vienna University of Technology, 2005.

[5] Blasco, J. Darkcomet extract information from binary. https://code.google.com/p/

alienvault-labs-garage/downloads/detail?name=extract_config_from_binary.py,
July 2012. Retrieved 2015-02-22.

[6] Boscovich, R. D. Microsoft takes on global cybercrime epidemic in
tenth malware disruption. http://blogs.microsoft.com/blog/2014/06/30/

microsoft-takes-on-global-cybercrime-epidemic-in-tenth-malware-disruption/,
June 2014. Retrieved 2015-02-22.

[7] Branco, R. R., Barbosa, G. N., and Neto, P. D. Scientific but not aca-
demical overview of malware anti-debugging, anti-disassembly and anti-vm technolo-
gies. https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_

Scientific_Academic_WP.pdf, 2012. Retrieved 2015-02-22.

[8] Brumfield, B. Computer spyware is newest weapon in Syrian conflict. http://edition.
cnn.com/2012/02/17/tech/web/computer-virus-syria/index.html, 2012. Retrieved
2015-02-22.

[9] Byrne, S. Malware spreads by CAB e-mail attach-
ments to evade ZIP/RAR filters. http://www.myce.com/news/

malware-spreads-by-cab-e-mail-attachments-to-evade-ziprar-filters-74635/,
January 2015. Retrieved 2015-02-08.

[10] Canto, J., Sistemas, H., Dacier, M., Kirda, E., and Leita, C. Large scale malware
collection: lessons learned. In Workshop on Sharing Field Data and Experiment Measure-
ments on Resilience of Distributed Computing Systems, 27th International Symposium on
Reliable Distributed Systems (2008), vol. 52, pp. 35–44.

105

http://www.contextis.com/research/blog/malware-analysis-dark-comet-rat/
http://www.contextis.com/research/blog/malware-analysis-dark-comet-rat/
https://www.honeynet.org/papers/bots
https://code.google.com/p/alienvault-labs-garage/downloads/detail?name=extract_config_from_binary.py
https://code.google.com/p/alienvault-labs-garage/downloads/detail?name=extract_config_from_binary.py
http://blogs.microsoft.com/blog/2014/06/30/microsoft-takes-on-global-cybercrime-epidemic-in-tenth-malware-disruption/
http://blogs.microsoft.com/blog/2014/06/30/microsoft-takes-on-global-cybercrime-epidemic-in-tenth-malware-disruption/
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
http://edition.cnn.com/2012/02/17/tech/web/computer-virus-syria/index.html
http://edition.cnn.com/2012/02/17/tech/web/computer-virus-syria/index.html
http://www.myce.com/news/malware-spreads-by-cab-e-mail-attachments-to-evade-ziprar-filters-74635/
http://www.myce.com/news/malware-spreads-by-cab-e-mail-attachments-to-evade-ziprar-filters-74635/

[11] Chen, X., Andersen, J., Morley Mao, Z., Bailey, M., and Nazario, J. Towards
an understanding of anti-virtualization and anti-debugging behavior in modern malware.
In IEEE International Conference on Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. (2008), IEEE, pp. 177–186.

[12] Cho, C. Y., Caballero, J., Grier, C., Paxson, V., and Song, D. Insights from
the inside: A view of botnet management from infiltration. In 3rd USENIX Workshop on
Large-Scale Exploits and Emergent Threats (2010), vol. 3, USENIX Association, pp. 2–2.

[13] Christodorescu, M., and Jha, S. Static Analysis of Executables to Detect Malicious
Patterns. In In Proceedings of the 12th USENIX Security Symposium (2003), vol. 12,
USENIX Association, pp. 169–186.

[14] Collberg, C., Thomborson, C., and Low, D. A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Science, The University of Auckland,
New Zealand, 1997.

[15] Computer Economics. 2007 Malware Report: The Economic Impact of Viruses, Spyware,
Adware, Botnets, and Other Malicious Code. http://www.computereconomics.com/page.
cfm?name=Malware%20Report, 2007. Retrieved 2015-02-22.

[16] Cooke, E., Jahanian, F., and McPherson, D. The zombie roundup: Understand-
ing, detecting, and disrupting botnets. In Proceedings of the USENIX Steps to Reducing
Unwanted Traffic on the Internet Workshop (2005), pp. 39–44.

[17] Corrons, L. Malware still generated at a rate of 160,000 new samples a
day in Q2 2014. http://www.pandasecurity.com/mediacenter/press-releases/

malware-still-generated-rate-160000-new-samples-day-q2-2014/, August 2014.
Retrieved 2015-02-01.

[18] Crocker, D. H. Standard for the Format of ARPA Internet Text Messages. RFC 0822,
Internet Engineering Task Force, https://www.ietf.org/rfc/rfc0822.txt, August 1982.
Retrieved 2015-02-22.

[19] Delorie, D. EXE Format. http://www.delorie.com/djgpp/doc/exe/, September 2010.
Retrieved 2015-02-22.

[20] Denbow, S., and Hertz, J. Pest control. http://matasano.com/research/

PEST-CONTROL.pdf, 2006. Retrieved 2015-02-22.

[21] Deutsch, P. GZIP file format specification version 4.3. RFC 1952, Internet Engineering
Task Force, https://tools.ietf.org/html/rfc1952, May 1996. Retrieved 2015-02-22.

[22] Diehl, S. Software visualization: visualizing the structure, behaviour, and evolution of
software. Springer Science & Business Media, 2007.

[23] du Bruyn, J. RAT-a-tat-tat: Taking the fight to the RAT controllers. http://www.

slideshare.net/sensepost/rat-atattat, 2013. Retrieved 2015-02-22.

[24] Edwards, J. It’s not the end of the world : DarkComet misses by a
mile. https://www.arbornetworks.com/asert/wp-content/uploads/2012/03/

Crypto-DarkComet-Report1.pdf, March 2012. Retrieved 2015-02-22.

106

http://www.computereconomics.com/page.cfm?name=Malware%20Report
http://www.computereconomics.com/page.cfm?name=Malware%20Report
http://www.pandasecurity.com/mediacenter/press-releases/malware-still-generated-rate-160000-new-samples-day-q2-2014/
http://www.pandasecurity.com/mediacenter/press-releases/malware-still-generated-rate-160000-new-samples-day-q2-2014/
https://www.ietf.org/rfc/rfc0822.txt
http://www.delorie.com/djgpp/doc/exe/
http://matasano.com/research/PEST-CONTROL.pdf
http://matasano.com/research/PEST-CONTROL.pdf
https://tools.ietf.org/html/rfc1952
http://www.slideshare.net/sensepost/rat-atattat
http://www.slideshare.net/sensepost/rat-atattat
https://www.arbornetworks.com/asert/wp-content/uploads/2012/03/Crypto-DarkComet-Report1.pdf
https://www.arbornetworks.com/asert/wp-content/uploads/2012/03/Crypto-DarkComet-Report1.pdf

[25] Eisenbarth, M., and Jones, J. BladeRunner: Adventures in Tracking Botnets. https://
www.botconf.eu/wp-content/uploads/2013/12/24-JasonJones-BladeRunner-paper.

pdf, 2013. Retrieved 2015-02-22.

[26] Feily, M., Shahrestani, A., and Ramadass, S. A survey of botnet and botnet detec-
tion. In Third International Conference on Emerging Security Information, Systems and
Technologies (2009), IEEE, pp. 268–273.

[27] Ferrand, O. How to detect the Cuckoo Sandbox and to Strengthen it? Journal of
Computer Virology and Hacking Techniques 11 (2015), 51–58.

[28] Ferrie, P. Attacks on Virtual Machine Emulators. https://www.symantec.com/

avcenter/reference/Virtual_Machine_Threats.pdf, 2007. Retrieved 2015-02-22.

[29] Fisher, D. DarkComet RAT Flames Out. http://threatpost.com/

darkcomet-rat-flames-out-070912, July 2012. Retrieved 2015-20-21.

[30] Freiling, F. C., Holz, T., and Wicherski, G. Botnet tracking: Exploring a root-
cause methodology to prevent distributed denial-of-service attacks. In Proceedings of 10 th
European Symposium on Research in Computer Security, ESORICS (2005), pp. 319–335.

[31] Fruz, A. Remote Access Tool. http://resources.infosecinstitute.com/

remote-access-tool/, April 2014. Retrieved 2015-02-18.

[32] Galperin, E., and Marquis-boire, M. Campaign Targeting Syrian Activists Es-
calates with New Surveillance Malware. https://www.eff.org/deeplinks/2012/04/

campaign-targeting-syrian-activists-escalates-with-new-surveillance-malware,
2012. Retrieved 2015-02-22.

[33] Gardsen, K. T. Detecting Remote Administration Trojans through Dynamic Analysis
using Finite-State Machines. Masters thesis, Gjvik University College, 2014.

[34] Gu, G., Perdisci, R., Zhang, J., Lee, W., and Others. BotMiner: Clustering Analysis
of Network Traffic for Protocol-and Structure-Independent Botnet Detection. In USENIX
Security Symposium (2008), vol. 2, pp. 139–154.

[35] Guilfanov, I. Decompilers and beyond. http://www.hakim.ws/BHUSA08/speakers/

Guilfanov_Decompilers_and_Beyond/BH_US_08_Guilfanov_Decompilers_and_Beyond_

slides.pdf, 2008. Retrieved 2015-02-22.

[36] Holz, T., Steiner, M., Dahl, F., Biersack, E., and Freiling, F. Measurements
and Mitigation of Peer-to-Peer-based Botnets : A Case Study on Storm Worm. In First
USENIX Workshop on Large-Scale Exploits and Emergent Threats (2008), vol. 8, pp. 1–9.

[37] Huffaker, B., Fomenkov, M., and Claffy, K. Geocompare: a comparison of pub-
lic and commercial geolocation databases. Technical report, Cooperative Association for
Internet Data Analysis (CAIDA), http://www.caida.org/publications/papers/2011/

geocompare-tr/geocompare-tr.pdf, May 2011. Retrieved 2015-02-22.

[38] Internet Assigned Number Authority. Special-use ipv4 addresses. RFC 3330, In-
ternet Engineering Task Force, https://tools.ietf.org/html/rfc3330, September 2002.
Retrieved 2015-02-22.

[39] Ivanov, I. API hooking revealed. http://www.rdsquared.net/2009/08/12/

CodeProject_%20API_Hooking_Revealed.pdf, 2002. Retrieved 2015-02-21.

107

https://www.botconf.eu/wp-content/uploads/2013/12/24-JasonJones-BladeRunner-paper.pdf
https://www.botconf.eu/wp-content/uploads/2013/12/24-JasonJones-BladeRunner-paper.pdf
https://www.botconf.eu/wp-content/uploads/2013/12/24-JasonJones-BladeRunner-paper.pdf
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://threatpost.com/darkcomet-rat-flames-out-070912
http://threatpost.com/darkcomet-rat-flames-out-070912
http://resources.infosecinstitute.com/remote-access-tool/
http://resources.infosecinstitute.com/remote-access-tool/
https://www.eff.org/deeplinks/2012/04/campaign-targeting-syrian-activists-escalates-with-new-surveillance-malware
https://www.eff.org/deeplinks/2012/04/campaign-targeting-syrian-activists-escalates-with-new-surveillance-malware
http://www.hakim.ws/BHUSA08/speakers/Guilfanov_Decompilers_and_Beyond/BH_US_08_Guilfanov_Decompilers_and_Beyond_slides.pdf
http://www.hakim.ws/BHUSA08/speakers/Guilfanov_Decompilers_and_Beyond/BH_US_08_Guilfanov_Decompilers_and_Beyond_slides.pdf
http://www.hakim.ws/BHUSA08/speakers/Guilfanov_Decompilers_and_Beyond/BH_US_08_Guilfanov_Decompilers_and_Beyond_slides.pdf
http://www.caida.org/publications/papers/2011/geocompare-tr/geocompare-tr.pdf
http://www.caida.org/publications/papers/2011/geocompare-tr/geocompare-tr.pdf
https://tools.ietf.org/html/rfc3330
http://www.rdsquared.net/2009/08/12/CodeProject_%20API_Hooking_Revealed.pdf
http://www.rdsquared.net/2009/08/12/CodeProject_%20API_Hooking_Revealed.pdf

[40] John, J. P., Moshchuk, A., Gribble, S. D., and Krishnamurthy, A. Studying
spamming botnets using Botlab. In 6th USENIX Symposium on Networked Systems Design
and Implementation (2009), pp. 291–306.

[41] Kalt, C. Internet Relay Chat: Client Protocol. RFC 2812, Internet Engineering Task
Force, https://tools.ietf.org/html/rfc2812, April 2000. Retrieved 2015-02-22.

[42] Karasaridis, A., Rexroad, B., and Hoeflin, D. Wide-scale botnet detection and
characterization. In Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets (Cambridge, MA, 2007), vol. 7.

[43] Kornblum, J. Identifying almost identical files using context triggered piecewise hashing.
Digital Investigation 3 (2006), 91–97.

[44] Kruegel, C., Robertson, W., Valeur, F., and Vigna, G. Static Disassembly of
Obfuscated Binaries. In USENIX security Symposium (2004), pp. 18–18.

[45] Kujawa, A. So You Want To Be A Malware Analyst. https://blog.malwarebytes.org/
intelligence/2012/09/so-you-want-to-be-a-malware-analyst/, September 2012. Re-
trieved 2015-02-01.

[46] Kujawa, A. You Dirty RAT! Part 1 DarkComet. http://blog.malwarebytes.org/

intelligence/2012/06/you-dirty-rat-part-1-darkcomet/, June 2012. Retrieved 2014-
11-23.

[47] Lau, B., and Svajcer, V. Measuring virtual machine detection in malware using DSD
tracer. Journal in Computer Virology 6 (2010), 181–195.

[48] Li, C., Jiang, W., and Zou, X. Botnet: Survey and case study. In Fourth International
Conference on Innovative Computing, Information and Control (2009), IEEE, pp. 1184–
1187.

[49] Long, S. Understanding a SQL Junction Table. https://megocode3.wordpress.com/

2008/01/04/understanding-a-sql-junction-table/, January 2008. Retrieved 2015-02-
22.

[50] Microsoft Corporation. Microsoft Cabinet Format. https://msdn.microsoft.com/

en-us/library/bb267310.aspx, 1997. Retrieved 2015-02-22.

[51] Microsoft Corporation v. Mutairi et al. 2014 2:14-cv-00987. U.S. Dist. (Nev. Jul.
10, 2014), 2014. http://docs.justia.com/cases/federal/district-courts/nevada/

nvdce/2:2014cv00987/101935/19/1.html. Retrieved 2015-02-15.

[52] Mosuela, L. What You See Isnt Necessarily What You Get. http://blog.cyren.com/

articles/what-you-see-isnt-necessarily-what-you-get.html, August 2014. Re-
trieved 2015-02-08.

[53] Nazario, J. Botnet Tracking : Tools , Techniques , and Lessons Learned. https://www.

blackhat.com/presentations/bh-dc-07/Nazario/Paper/bh-dc-07-Nazario-WP.pdf,
2007. Retrieved 2015-02-21.

[54] Net Applications. Operating System Market Share. https://www.netmarketshare.

com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpsp=2014&qpnp=

1&qptimeframe=Y, March 2015. Retrieved 2015-03-28.

108

https://tools.ietf.org/html/rfc2812
https://blog.malwarebytes.org/intelligence/2012/09/so-you-want-to-be-a-malware-analyst/
https://blog.malwarebytes.org/intelligence/2012/09/so-you-want-to-be-a-malware-analyst/
http://blog.malwarebytes.org/intelligence/2012/06/you-dirty-rat-part-1-darkcomet/
http://blog.malwarebytes.org/intelligence/2012/06/you-dirty-rat-part-1-darkcomet/
https://megocode3.wordpress.com/2008/01/04/understanding-a-sql-junction-table/
https://megocode3.wordpress.com/2008/01/04/understanding-a-sql-junction-table/
https://msdn.microsoft.com/en-us/library/bb267310.aspx
https://msdn.microsoft.com/en-us/library/bb267310.aspx
http://docs.justia.com/cases/federal/district-courts/nevada/nvdce/2:2014cv00987/101935/19/1.html
http://docs.justia.com/cases/federal/district-courts/nevada/nvdce/2:2014cv00987/101935/19/1.html
http://blog.cyren.com/articles/what-you-see-isnt-necessarily-what-you-get.html
http://blog.cyren.com/articles/what-you-see-isnt-necessarily-what-you-get.html
https://www.blackhat.com/presentations/bh-dc-07/Nazario/Paper/bh-dc-07-Nazario-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Nazario/Paper/bh-dc-07-Nazario-WP.pdf
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpsp=2014&qpnp=1&qptimeframe=Y
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpsp=2014&qpnp=1&qptimeframe=Y
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpsp=2014&qpnp=1&qptimeframe=Y

[55] Ortega, A. Hardening Cuckoo Sandbox against VM aware mal-
ware. https://www.alienvault.com/open-threat-exchange/blog/

hardening-cuckoo-sandbox-against-vm-aware-malware, December 2012. Retrieved
2015-02-15.

[56] Pavlov, I. 7z Format. http://www.7-zip.org/7z.html, October 2001. Retrieved 2015-
02-22.

[57] PKWARE Inc. APPNOTE.TXT - .ZIP File Format Specification. http://web.archive.
org/web/20011203085830/http://www.pkware.com/support/appnote.txt, December
2001. Retrieved 2015-02-22.

[58] Plachy, J. The Portable Executable File Format. http://www.csn.ul.ie/~caolan/pub/
winresdump/winresdump/doc/pefile.html, August 1997. Retrieved 2015-02-22.

[59] Porras, P., Säıdi, H., and Yegneswaran, V. A Multi-perspective Analysis of the Storm
(Peacomm) Worm. Technical report, Computer Science Laboratory, SRI International, 2007.

[60] Raffetseder, T., Kruegel, C., and Kirda, E. Detecting System Emulators. In
Proceedings of the 10th International Conference on Information Security (2007), Springer,
pp. 1–18.

[61] Rekhter, Y., Moskowitz, R. G., Karrenberg, D., de Groot, G. J., and Lear,
E. Address Allocation for Private Internets. RFC 1918, Internet Engineering Task Force,
https://tools.ietf.org/html/rfc1918, February 1996. Retrieved 2015-02-22.

[62] Riccardi, M. The Dorothy Project: inside the Storm. PhD thesis, Universit degli Studi di
Milano, 2008.

[63] Riccardi, M., Oro, D., Luna, J., Cremonini, M., and Vilanova, M. A framework for
financial botnet analysis. In eCrime Researchers Summit (eCrime) (2010), IEEE, pp. 1–7.

[64] Roshal, A. RAR 5.0 archive format. http://www.rarlab.com/technote.htm, May 2013.
Retrieved 2015-02-22.

[65] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language Reference
Manual. Pearson Higher Education, 2004.

[66] Schneier, B. Applied cryptography: Protocols, algorithm, and source code in C. John
Wiley & Sons, 1996.

[67] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kem-
merer, R., Kruegel, C., and Vigna, G. Your botnet is my botnet: analysis of a botnet
takeover. In Proceedings of the 16th ACM conference on Computer and communications
security (2009), ACM, pp. 635–647.

[68] Strayer, W. T., Lapsely, D., Walsh, R., and Livadas, C. Botnet Detection Based
on Network Behavior. In Botnet Detection: Advances in Information Security. Springer,
2008, pp. 1–24.

[69] Symantec. Bots and Botnets - A Growing Threat. https://us.norton.com/botnet/

promo, 2014. Retrieved 2015-02-01.

109

https://www.alienvault.com/open-threat-exchange/blog/hardening-cuckoo-sandbox-against-vm-aware-malware
https://www.alienvault.com/open-threat-exchange/blog/hardening-cuckoo-sandbox-against-vm-aware-malware
http://www.7-zip.org/7z.html
http://web.archive.org/web/20011203085830/http://www.pkware.com/support/appnote.txt
http://web.archive.org/web/20011203085830/http://www.pkware.com/support/appnote.txt
http://www.csn.ul.ie/~caolan/pub/winresdump/winresdump/doc/pefile.html
http://www.csn.ul.ie/~caolan/pub/winresdump/winresdump/doc/pefile.html
https://tools.ietf.org/html/rfc1918
http://www.rarlab.com/technote.htm
https://us.norton.com/botnet/promo
https://us.norton.com/botnet/promo

[70] Thomas, K., and Nicol, D. M. The Koobface botnet and the rise of social malware? In
Proceedings of the 5th IEEE International Conference on Malicious and Unwanted Software,
Malware 2010 (Oct. 2010), pp. 63–70.

[71] Torres, S. Malware figures beat records with more than 20 million new samples identi-
fied in the third quarter of the year. http://www.pandasecurity.com/mediacenter/src/
uploads/2014/11/Quarterly-Report-PandaLabs_Q3.pdf, November 2014. Retrieved
2015-02-01.

[72] Wagener, G., State, R., and Dulaunoy, A. Malware behaviour analysis. Journal in
Computer Virology 4 (2008), 279–287.

[73] Warner, G. GameOver Zeus now uses Encryption to bypass Perimeter Security. http:

//garwarner.blogspot.com.au/2014/02/gameover-zeus-now-uses-encryption-to.

html, February 2014. Retrieved 2015-02-08.

[74] Willems, C., Holz, T., and Freiling, F. Toward Automated Dynamic Malware Anal-
ysis Using CWSandbox. IEEE Security and Privacy 5 (2007), 32–39.

[75] Wilson, C. Exterminating the RAT Part I: Dissect-
ing Dark Comet Campaigns. http://asert.arbornetworks.com/

exterminating-the-rat-part-i-dissecting-dark-comet-campaigns/, July 2012.
Retrieved 2015-02-22.

[76] Wroblewski, G. General Method of Program Code Obfuscation. PhD thesis, Wroclaw
University of Technology, Institute of Engineering Cybernetics, 2002.

[77] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Transport Layer Protocol. RFC
4253, Internet Engineering Task Force, https://tools.ietf.org/html/rfc4253, January
2006. Retrieved 2015-02-22.

[78] Zhuge, J., Holz, T., and Han, X. Characterizing the IRC-based Botnet Phenomenon.
Technical report, Peking University & University of Mannheim, http://www.dihe.de/

docs/docs/botnet-china-TR.pdf, December 2007. Retrieved 2015-02-22.

110

http://www.pandasecurity.com/mediacenter/src/uploads/2014/11/Quarterly-Report-PandaLabs_Q3.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/11/Quarterly-Report-PandaLabs_Q3.pdf
http://garwarner.blogspot.com.au/2014/02/gameover-zeus-now-uses-encryption-to.html
http://garwarner.blogspot.com.au/2014/02/gameover-zeus-now-uses-encryption-to.html
http://garwarner.blogspot.com.au/2014/02/gameover-zeus-now-uses-encryption-to.html
http://asert.arbornetworks.com/exterminating-the-rat-part-i-dissecting-dark-comet-campaigns/
http://asert.arbornetworks.com/exterminating-the-rat-part-i-dissecting-dark-comet-campaigns/
https://tools.ietf.org/html/rfc4253
http://www.dihe.de/docs/docs/botnet-china-TR.pdf
http://www.dihe.de/docs/docs/botnet-china-TR.pdf

Appendices

111

A
DarkComet Builder Menus

This chapter provides a detailed breakdown of the DarkComet builder menus and the corre-
sponding configuration keys which are embedded within the bot binary. The order of the menus
mirrors that of the order within the builder application. The configuration keys are presented
between square brackets.

Main Settings
This submenu is responsible for the following configuration settings:

• Security Password [PWD]: The symmetric RC4 key used for encryption of network
communications between the DarkComet C&C server and bot

• Process Mutex [MUTEX]: Used to prevent multiple instances of the same DarkComet
bot binary executing on a victim computer

• Server ID [SID]: An alpha-numeric internal identifier often used by the botmaster to
differentiate between bots from different Phishing or spam campaigns.

• Profile name: Used to name a DarkComet builder configuration profile

• Active FWB (Firewall bypass) [FWB]: Windows firewall bypass enabled (1) or dis-
abled (0). This is accomplished via injecting the communication code into a process which
is allowed to bypass the Windows firewall.

Network Settings
This submenu is responsible for the following configuration settings:

• IP/DNS and Port [NETDATA]: The DarkComet C&C IP address(es)/hostname(s)
and TCP port(s) details

These settings must match that of the DarkComet C&C module or DarkComet bots will not be
able to connect. Multiple C&C’s can be configured so as to provide redundancy if the primary
C&C is offline.

112

Figure A.1: DarkComet Main Settings menu.

Figure A.2: DarkComet Network Settings menu.

113

Module Startup
This submenu is responsible for the following configuration settings:

• Start the stub with windows (module startup) [INSTALL]: Enables or disables
the starting of the DarkComet server on Windows startup thereby surviving a reboot of
the victim computer.

• Drop file in [COMBOPATH]: A hardcoded list of directories within which the Dark-
Comet bot binary is copied post execution. The options refer to environment variables so
as to support non-standard operating system installations:

– HDD# [0]

– WINDIN# [1]

– SYS32# [2]

– APP# [3]

– FAV# [4]

– START# [5]

– MYPROG# [6]

– MYDOCS# [7]

– COOKIE# [8]

– DESKTOP# [9]

– TEMP# [10]

– CUSTOM# [11]

• The directory and filename of the DarkComet bot binary [EDTPATH]: This
may be different from the initial filename.

• Startup key name [KEYNAME]: The registry key name to use when installing persis-
tence functionality,

• Melt file after first execution [MELT]: Enables or disables the deletion of the initial
bot binary file upon successful execution,

• Change file creation date [CHANGEDATE] and [EDTDATE]: Alter the Dark-
Comet bot binaries creation date to abotmaster selected date,

• Persistence installation (always comes back) [PERSINST]: Persistence enabled (1)
or disabled (0).

• Dropped file attrib [FILEATTRIB]: Used to alter the file attributes of the DarkComet
bot binary. Values are:

– None [0]

– Hidden [2]

– System [4]

114

Figure A.3: DarkComet Module Starup menu.

– Hidden and System [6]

• Parent folder attrib [DIRATTRIB]: Used to alter the directory, containing the DarkComet
bot binary, attributes. Values are:

– None [0]

– Hidden [2]

– System [4]

– Hidden and System [6]

Install Message
This submenu is responsible for the following configuration settings:

• Display a message box on first module load [FAKEMSG]: Enables (1) or disables
(0) the displaying of a message box when the DarkComet bit binary is first executed,

• Icon [MSGICON]: The icon of the message box to be used in the ”fake” message.

• Title [MSGTITLE]: The message box title to be used in the ”fake” message.

• Message [MSGCORE]: Sets the contents of the message box. This value is stored as
hexadecimal in the DarkComet server configuration.

A message box is typically used to disguise the true nature of the DarkComet bot binary. Whilst
execution of the bot binary is silent and provides no feedback to the victim, botmasters may
disguise the bot binary as being a benign application therefore a victim user would expect some
feedback upon execution. Abotmaster may design a message box to appear to be an error mes-

115

Figure A.4: DarkComet Install Message menu.

sage, so as to that the victim is under the impression that the software failed to work correctly
therefore not raising their suspicions.

Module Shield
This submenu is responsible for the following configuration settings:

• Hide startup key from msconfig (32bit) [SH1]: Enable or disable hiding of the Dark-
Comet bot binary’s presence from the Microsoft System Configuration Utility (msconfig).

• Persistent process (if killed it come back) [PERS1]: Enable or disable a ”watcher”
process which will restart the DarkComet bot process should it be terminated.

• Totally hide stub from explorer and related files explorer [CHIDEF]: Enable
or disable hiding of the DarkComet bot binary from Windows Explorer and other file
explorers.

• Totally hide parent stub folder from explorer and related files explorer [CHIDED]:
Enable or disable hiding of the DarkComet bot binary directory from Windows Explorer
and other file explorers.

• Disable Task Manager (CTRL+ALT+SUPR) [SH3]: Enable or disable the disabling
of a victim users access to the Windows Task Manager.

• Disable registry (Regedit) [SH4]: Enable or disable the disabling of a victims users
access to the Windows registry editor.

• Disable win firewall (XP Sp3 to Windows Seven) [SH5]: Enable or disable the
disabling of builtin Windows host firewall.

116

Figure A.5: DarkComet Module Shield menu.

• Disable Windows UAC (User Account Control) [SH6]: Enable or disable the dis-
abling of the User Account Control (UAC) functionality.

• Disable AV notify [SH7]: Enable or disable the disabling of anti-virus notifications.

• Disable Security Centre [SH9]: Enable or disable the disabling of a victim users access
to the Windows Security Centre; used to configure built-in Windows security options.

• Disable Win Update [SH8]: Enable or disable the disabling of the Windows Update
services.

• Disable Control Panel [SH10]: Enable or disable the disabling of a victims access to
the Windows Control Panel.

KeyLogger
This submenu is responsible for the following configuration settings:

• Active offline keylogger on server startup [OFFLINEK]: Enable (1) or disable (0)
the capturing of victim user keystrokes.

• Send logs via FTP (File Transfer Protocol) [FTPUPLOADK]: Enable (1) or dis-
able (0) the uploading of victim user keystrokes to a FTP server for storage when the C&C
is offline.

• FTP Host [FTPHOST]: The FTP server DNS hostname or IP address used to store
keylogs.

• FTP User [FTPUSER]: The username for the FTP server used for storing keylogs.

• FTP Pass [FTPPASS]: The password for the FTP server used for storing keylogs.

117

Figure A.6: DarkComet Keylogger menu.

• FTP Port [FTPPORT]: The TCP port for the FTP server used for storing keylogs.

• FTP Path [FTPROOT]: The path on the FTP server where keylogs will be stored.

• Send logs when size reach [FTPSIZE]: The maximum size of the keylogs before being
uploaded to the configured FTP server.

Hosts File
This submenu is responsible for the following configuration settings:

• Clear the whole previous hosts file data before writing the new one [OVDNS]:
Enable or disable the deletion of a victim computer’s ”hosts” file before modification.

• IP Address and DNS [PDNS]: Entries to be added to a victim computer’s ”hosts” file

Add plugins
Here a botmaster can extend the features available in a default DarkComet installation through
the installation of plugins. The botmaster can also enable these plugins to start when the Dark-
Comet server component starts.

File binder

Choose Icon
A botmaster can change the display icon of the DarkComet bot binary from the default. Dark-
Comet comes with a set of pre-installed icons or the botmaster can choose to provide a path to
custom icons.

118

Figure A.7: DarkComet Hosts File menu.

Figure A.8: DarkComet Add Plugins menu.

119

Figure A.9: DarkComet File Binder menu.

Figure A.10: DarkComet Choose Icon menu.

120

Figure A.11: DarkComet Stub Finalization menu.

Stub Finalization
This submenu is responsible for the following configuration settings:

• Output extension: The builder provides the following additional bot binary file type
outputs:

– .exe - Normal executable

– .com - Dos executable

– .bat - Batch file

– .pif - Dos shortcut

– .scr - Screen saver

• No compression: Do not compress or obfuscate the bot binary, beyond the default.

• UPX (Ultimate Packer Executable): Make use of UPX for bot binary compression
and obfuscation.

• MPRESS (.NET PPE32+): Make use of MPRESS for bot binary compression and
obfuscation. This results in the bot binary being wrapped in a .NET stub executable.

• Generate a patch for remote settings updater:

• Save the profile when stub successfully generated: Save the bot binary configuration
settings used for the future building of bot binaries.

121

B
DarkComet Complete Configuration Key-Value Pairs

This chapter provides a complete listing of the DarkComet bot binary configuration key-value
pairs, along with the menu location, value type, an example value, and a description of the effect
of the configuration option on the operation of the bot binary. The order of the tables mirrors
that of the DarkComet builder, which allows for easier referencing. The configuration pairs
presented in Table B.9 do not have a corresponding menu item as they are embedded within the
bot binary by the DarkComet builder, allowing no possibility for modification.

122

Table B.1: Main Settings DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

FWB Main Settings Bool 1 Windows firewall bypass en-
abled (1) or disabled (0). This
accomplished via injecting the
communication code into a
process which is allowed to by-
pass the Windows firewall.

MUTEX Main Settings String DC MUTEX-14ECDN4 Used to prevent multiple in-
stances of the same Dark-
Comet bot binary executing
on a victim computer.

PWD Main Settings String password The symmetric RC4 key used
for encryption of network
communications between the
DarkComet C&C server and
bot.

SID Main Settings String Guest16 An alpha-numeric internal
identifier often used by the
botmaster to differentiate
between bots from different
Phishing or spam campaigns.

Table B.2: Network Settings DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

NETDATA Network Settings String 127.0.0.1:1604 The DarkComet C&C IP
address(es)/hostname(s) and
TCP port(s) details; IP ad-
dress and TCP port separated
by a colon (’:’).

123

Table B.3: Module Startup DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

CHANGEDATE Module Startup Bool 1 Enables (1) or disables (0) the
altering of the DarkComet bot
binary’s creation date to abot-
master selected date.

COMBOPATH Module Startup Integer 7 Parent directory within which
the DarkComet server is
saved.

DIRATTRIB Module Startup Integer 2 Attribute to assign to the
DarkComet server executable
child directory.

EDTDATE Module Startup String 16/04/2007 Date to change the creation
date of the DarkComet server
executable to.

EDTPATH Module Startup String MSDCSC\msdcsc.exe Child directory and filename
of the DarkComet server exe-
cutable.

FILEATTRIB Module Startup Integer 2 Filesystem attribute to assign
to the DarkComet bot binary.

INSTALL Module Startup Bool 1 Enable (1) or disables (0)
the starting of the Dark-
Comet bot binary on Win-
dows startup, thereby surviv-
ing a reboot of the victim
computer.

KEYNAME Module Startup String MicroUpdate The registry key name to
use when installing persis-
tence functionality. The
registry key is created under
HKCU\Software\Microsoft\

Windows\CurrentVersion\

Run\ or values are inserted
into the ”Userinit” key
under HKLM\SOFTWARE\

Microsoft\WindowsNT\

CurrentVersion\Winlogon.

MELT Module Startup Bool 1 Enables (1) or disables (0) the
deletion of the initial bot bi-
nary file upon successful exe-
cution.

PERSINST Module Startup Bool 1 Persistence enabled (1) or dis-
abled (0).

124

Table B.4: Install Message DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

FAKEMSG Install Message Bool 1 Enables (1) or disables (0) the
displaying of a ”fake” message
upon initial DarkComet bot
binary execution.

MSGCORE Install Message String 48656C6C6F0D0A The text of the ”fake” mes-
sage. The message is stored
as hexadecimal.

MSGICON Install Message Integer 64 The icon of the message box
to be used in the ”fake” mes-
sage.

MSGTITLE Install Message String Welcome The message box title to be
used in the ”fake” message.

125

T
a
b

le
B

.5
:

M
o
d

u
le

S
h

ie
ld

D
ar

k
C

om
et

b
ot

b
in

ar
y

co
n

fi
gu

ra
ti

on
k
ey

-v
al

u
e

p
ai

rs
.

S
e
tt

in
g

K
e
y

M
e
n
u

L
o
c
a
ti

o
n

T
y
p

e
E

x
a
m

p
le

D
e
sc

ri
p

ti
o
n

C
H

ID
E

D
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

h
id

in
g

of
th

e
D

ar
k
-

C
om

et
b

ot
b

in
ar

y
d

ir
ec

to
ry

fr
om

W
in

d
ow

s
E

x
p

lo
re

r
an

d
ot

h
er

fi
le

ex
p

lo
re

rs
.

C
H

ID
E

F
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

h
id

in
g

of
th

e
D

ar
k
-

C
om

et
b

ot
b

in
ar

y
fr

om
W

in
d

ow
s

E
x
p

lo
re

r
an

d
ot

h
er

fi
le

ex
p

lo
re

rs
.

P
E

R
S

M
o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

a
”w

at
ch

er
”

p
ro

ce
ss

w
h

ic
h

w
il

l
re

st
ar

t
th

e
D

ar
k
C

om
et

se
rv

er
p

ro
-

ce
ss

sh
ou

ld
it

b
e

te
rm

in
at

ed
.

S
H

1
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

h
id

in
g

of
th

e
D

ar
k
C

om
et

se
rv

er
ex

ec
u

ta
b

le
s

p
re

se
n

ce
fr

om
th

e
M

ic
ro

so
ft

S
y
st

em
C

on
fi

gu
ra

ti
on

U
ti

li
ty

(m
sc

on
fi

g)
.

S
H

3
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
a

v
ic

ti
m

s
u

se
rs

ac
ce

ss
to

th
e

W
in

d
ow

s
T

as
k

M
an

ag
er

.

S
H

4
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
a

v
ic

ti
m

s
u
se

rs
ac

ce
ss

to
th

e
W

in
d

ow
s

re
gi

st
ry

ed
it

or
.

S
H

5
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li
n

g
of

b
u

il
ti

n
W

in
d

ow
s

h
os

t
fi

re
w

al
l.

S
H

6
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
th

e
U

se
r

A
cc

ou
n
t

C
on

tr
ol

(U
A

C
)

fu
n

ct
io

n
al

it
y.

S
H

7
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
an

ti
-

v
ir

u
s

n
ot

ifi
ca

ti
on

s.

S
H

8
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
th

e
W

in
d

ow
s

U
p

d
at

e
se

rv
ic

es
.

S
H

9
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
a

v
ic

ti
m

s
u

se
rs

ac
ce

ss
to

th
e

W
in

d
ow

s
S

ec
u

ri
ty

C
en

tr
e;

u
se

d
to

co
n

fi
gu

re
b

u
il

t-
in

W
in

d
ow

s
se

cu
ri

ty
op

ti
on

s.

S
H

10
M

o
d

u
le

S
h

ie
ld

B
o
o
l

1
E

n
ab

le
(1

)
or

d
is

ab
le

(0
)

th
e

d
is

ab
li

n
g

of
a

v
ic

ti
m

u
se

rs
ac

ce
ss

to
th

e
W

in
d

ow
s

C
on

tr
ol

P
an

el
.

126

Table B.6: Keylogger DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

FTPHOST KeyLogger String ftp.yourhost.com The FTP server DNS host-
name or IP address used to
store keylogs.

FTPPASS KeyLogger String password The password for the FTP
server used for storing key-
logs.

FTPPORT KeyLogger Integer 21 The TCP port for the FTP
server used for storing key-
logs.

FTPROOT KeyLogger String / The path on the FTP server
where keylogs will be stored.

FTPSIZE KeyLogger Integer 10 The maximum size of the key-
logs before being uploaded to
the configured FTP server.

FTPUPLOADK KeyLogger Bool 1 Enable (1) or disable (0)
the uploading of victim user
keystrokes to a FTP server for
storage when the C&C is of-
fline.

FTPUSER KeyLogger String username The username for the FTP
server used for storing key-
logs.

OFFLINEK KeyLogger Bool 1 Enable (1) or disable (0)
the capturing of victim user
keystrokes.

Table B.7: Hosts File DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

OVDNS Hosts File Bool 1 Enable (1) or disable (0) the
deletion of a victim comput-
ers ”hosts” file before modifi-
cation.

PDNS Hosts File String 127.0.0.1:localhost Entries to be added to a vic-
tim computers ”hosts” file; IP
address and DNS hostname
separated by a colon (’:’).

Table B.8: File Binder DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

BIND File Binder Bool 1 Is the DarkComet server mod-
ule bound (1) or not (0).

MULTIBIND File Binder Bool 1 Unknown

127

Table B.9: Miscellaneous DarkComet bot binary configuration key-value pairs.

Setting Key Menu Location Type Example Description

GENCODE None String TptMVoCaRrMB Unknown. A random 12
character string consisting of
upper and lower-case alpha-
numeric characters. The
value is generated every time
a DarkComet server exe-
cutable is generated, even if
the configuration settings are
unchanged.

SH2 None Unknown Unknown Unknown

128

	List of Figures
	List of Tables
	Introduction
	Research Goal
	Research Methodology
	Document Conventions
	Document Structure

	Literature Review
	Malware Analysis
	Static Analysis
	Dynamic Analysis

	Malware Detection
	Malware Use
	Existing Automated Botnet Analysis Framework Research
	Existing Botnet Framework Shortcomings
	Summary

	DarkComet
	DarkComet Introduction
	DarkComet Capabilities
	DarkComet Components
	DarkComet Client and Builder
	DarkComet Server

	DarkComet Configuration
	DarkComet Communication
	Previous DarkComet Research
	DarkComet Summary

	Framework Design
	Framework Design Considerations
	Framework Details
	Sample Collection System
	Sample Acquisition Module
	Sample Metadata Collection Module

	Sample Analysis System
	Static Analysis Module
	Dynamic Analysis Module

	Infiltration System
	C&C Liveness Module
	C&C Interaction Module

	Message Queue
	Framework Design Summary

	Framework Implementation
	Sample Collection System Implementation
	Sample Acquisition Module Implementation
	Sample Metadata Collection Module Implementation

	Sample Analysis System Implementation
	Static Analysis Module Implementation

	Infiltration System Implementation
	C&C Liveness Module Implementation
	C&C Interaction Module Implementation

	Datastore Implementation
	Framework Implementation Summary

	Case-study: Data Analysis
	Sample Acquisition Module Analysis
	Sample Metadata Collection Module Analysis
	Malware Family Distribution
	File Type Distribution
	File Size Analysis
	First Seen Distribution
	Using Fuzzy Hashing to Identify DarkComet Versions

	Sample Analysis System Analysis
	Statically Analysed Malware Family Distribution
	Statically Analysed File Types Distribution
	Statically Analysed First Seen Distribution
	C&C Servers per Bot Binary
	C&C Hostname Analysis
	C&C TCP Port Analysis
	C&C Communication Encryption Key Analysis
	C&C Bot Configuration Analysis

	C&C Liveness Module Analysis
	C&C Geographic Dispersion

	C&C Interaction Module Analysis
	Victim Geogrpahic Distribution
	Victim Organisation Distribution
	Common C&C Ports
	Botnet Size
	Victim Operating System
	Victim Username

	Summary

	Conclusion
	Research Methodology
	Existing Framework Reviews
	Framework Design Considerations

	Case-study Results
	Proposed Framework Shortcomings
	Future Work
	References
	Appendices
	DarkComet Builder Menus
	DarkComet Complete Configuration Key-Value Pairs

